Sinx ve Cosx Fonksiyonları Türev İspatları

Etiketler :
Açının sinüsü ve kosinüsü: Birim çember üzerinde, rastgele bir P noktası belirleyelim. P noktasından orijine çizilerek oluşturulan açıyı gözönüne alalım. P noktasının bu açı sayesinde oluşturduğu apsis değerine açının kosinüsü, P noktasının ordinatına da açının sinüsü denir. Verilen P noktası için; x = cosa , y = sina olduğundan aşağıdaki sonuçlar çıkarılabilir.

1.     P noktası çember üzerinde ve yarıçapı 1 birim olan birim çember üzerinde bir nokta olduğu için; Cosinüs fonksiyonu -1 ile 1 arasında değerler alacaktır. Verilen tüm reel sayı değerleri için cosinüs fonksiyonun alabileceği en küçük değer -1 ve alabileceği en büyük değer ise +1 olacaktır. Birim çember üzerinde bu durum kolaylıkla görülebilir.
            -1 < cosa < 1  veya  cos : R ---> [-1,1]  dir. Yani kosinüs fonksiyonunun tanım kümesi R, görüntü kümesi [-1,1] dir. 
Aynı şekilde ; Sinüs fonksiyonu -1 ile 1 arasında değerler alacaktır. Verilen tüm reel sayı değerleri için sinüs fonksiyonun alabileceği en küçük değer -1 ve alabileceği en büyük değer ise +1 olacaktır. Birim çember üzerinde bu durum cosinüs fonksiyonunda olduğu gibi kolaylıkla görülebilir. 
-1 < sina <veya  sin : R ---> [-1,1]  dir. Yani sinüs fonksiyonunun tanım kümesi R, görüntü kümesi [-1,1] dir.

2.     x = cosa  ve  y = sina  olduğuna göre;    birim çemberde çizilen dik üçgen yardımıyla bir a açısı için pisagor teoremi uygulanırsa; cos2a + sin2a= 1  bulunur.  Bu trigonometrideki temel teoremlerden biridir.
Açının tanjantı ve kotanjant değerleri bulunurken; Birim çemberin dışındaki bir A noktasından çizilen teğeti incelersek;  m,  bir reel sayı olmak üzere, T(1,m) noktası teğetin üzerindedir. T noktasının ordinatına oluşan açının tanjantı denir. Tanjsnt değeri aynı zamanda verilen bir doğrunun eğimini verir. Eğim m harfi ile gösterilirse kısaca  m = tana yazılabilir.

Sonuç :T(1,m) noktası teğet üzerindeki herhangi bir nokta için, m herhangi bir nokta olabilir. Dolayısıyla; tanjant fonksiyonunun tanım kümesi pi sayısı 180 derece olarak ifade edilen radyan açı olmak üzere, (pi/2 +kpi) yani 90 derece ve tek katlarında (90, 270, 450... gibi açılar hariç olmak üzere) hariç bütün gerçel sayılar kümesinde tanımlıdır. Tanjant fonksiyonun görüntü kümesi ise R dir. Aynı şekilde cotanjant fonksiyonunun tanım kümesi (pi+kpi) yani 180 derece ve katlarında 180, 360, 540,...vs gibi açılar hariç olmak üzere) hariç bütün gerçel sayılarda tanımlıdır ve görüntü kümesi de R  olarak belirlenir. 

Tanjant ve cotanjant fonksiyonları çarpma işlemine göre birbirlerinin tersi olduğundan yani tanx = 1/cotx olarak yazılabildiği için tanx.cotx=1 olarak önemli bir teorem bulunmuş olur.
Tanjant ve cotanjant fonksiyonları aslında esas fonksiyonlar olmayıp tali fonksiyonlardandır. Yani tan fonksiyonu aslında bir açının sinüs değerinin, cosinüs değerine bölümü ile bulunabilir. tanx=sinx/cosx olarak yazılabilir. Aynı şekilde cotx=cosx/sinx olarak yazılabilir.

Verilen bu ön bilgilere göre trigonometrik fonksiyonların türevi alınırken trigonometrideki (Bkz. Trginometri Dönüşüm formülleri) (Bkz. Trigonometri Toplam ve fark formülleri) ve limit ile verilen türev tanımından yararlanılarak türev hesabı yapılır.

3 yorum:

  1. tşkkrler güzel paylaşım.. :)

    YanıtlaSil
  2. yukarıda limit h sıfıra giderken cos(h)-1/h sonucuna direk sıfır demiş, insan bir açıklar orsda sonsuz bölü sonsuz var

    YanıtlaSil
  3. sonsuz bölü sonsuzdan ziyade orda sıfır bölü sıfır tanımsızlığı var ama yine de sen bilirsin

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Bir Nefeste Matematik, Chris Waring29.12.2019 - 0 YorumChris Waring matematiği herkesin erişebileceği, anlayabileceği ve aynı zamanda eğlenebileceği bir hale getiriyor. En önemli konuları, etraflıca düşünülmüş problemler ve gerçek hayattan alınan örneklerle anlatıyor. Bırakın bu kitap size…
  • Doğrusal Denklem Sistemleri (Matrislerle Çözüm)19.11.2015 - 1 Yorum Daha önceki konumuzda doğrusal denklem sistemlerinin çözümünü elemanter satır ve sütun işlemleri yardımıyla yapmıştık. (Bkz. Dogrusal Denklem Sistemleri) Buradaki sayfamızda verilen herhangi bir doğrusal denklemin gerekli şartları sağlamasıyla…
  • Sarrus Kuralı12.01.2025 - 0 YorumDeterminat hesabında, kofaktör matrislerinden yararlanarak satır ya da sütuna göre açılım yapılarak hesaplama işlemi yapılır. (Bkz: Determinant Hesabı)  Bu şekilde determinant hesabının yanında bazı sık kullanılan kare matrislerin determinant…
  • Matrislerde toplama ve çıkarma işlemi24.10.2024 - 0 YorumMatrislerde toplama ve çıkarma işlemi yaparken aynı boyutta olan matrislerin karşılıklı elemanları toplanır veya çıkarılır. Yani iki matrisin toplanabilmesi veya çıkarılabilmesi için kesinlikle satır ve sütunları (mxn) boyutları aynı olmalıdır.…
  • Öğrencilerimizden Anlamlı Karikatürler30.04.2016 - 0 Yorum Çalıştığım lisedeki öğrencilerimizin; birlik, beraberlik ve terör konularında çizdiği onlarca karikatür ve resim fotoğrafları arasından seçtiğim birbirinden anlamlı üç karikatürü istifadenize sunuyorum. Gerçekten de gençliğimizin boş yetişmediğinin…
  • Alfred Posamentier, Pi'nin Biyografisi13.03.2014 - 0 Yorumİnsanlık tarihi boyunca bütün düşünürleri etkileyen, bilim adamlarını büyüleyen bu gizemli akıl almaz Pi sayısı nedir? Gerçek değeri nasıl ifade ediliyor? Matematikçiler Pinin değerine nasıl karar veriyorlar? Piyi ne tür işlemlerde kullanıyoruz?…
  • Emali Beyitleri ve Akaid06.03.2010 - 2 Yorum Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri;  kuşkusuz Emâlî kasidesidir. "Bed'ül Emali" kasidesini,  Sirâceddin Ali bin Osman el-Ûşî (ö.1180) hazretleri kaleme almıştır. Tam künyesi; "Ebû…
  • Namazı Bozan Durumlar09.07.2010 - 0 Yorum Namazı Bozan ve Bozmayan Şeyler     475- "Fesad" bozulma ve "İfsad" da, bozma demektir. Bunların karşıtı "Salâh (Sıhhat)" ve "Islah" dır. İbadetlerde fesad ile "butlan" birdir. Fasid olan bir ibadete "batıl" da denir. Bir şeyi bozan…