Necip Güven, Matematikle Barışıyorum


Emekli sınıf öğretmeni Necip Güven, öğrencilere matematiği sevdirmek için yazdığı "Matematikle Barışıyorum" kitabı ilköğretim çağındaki öğrencilerin matematik korkularını yenmeleri için ilaç olacak niteliktedir.

Necip Güven, bazı öğretmenlerin kendisini "Matematik Don Kişot"una benzettiğini belirterek, matematik öğretme yolunda önerileri olduğunu kaydetti. Uzun bir süre evde matematiği sevdirmek için projeler ürettiğini anlatan Güven, şöyle konuştu: "Matematik zor bir derstir" ifadesinin çok zararını gördük ve değiştirmek istiyoruz. Matematiğin atadan kalma yöntemlerle öğrenilmesi zordur. Matematik öğretmek için yeni yöntemler bulursak, kolay bir ders haline gelebilir." "Matematikle Barışıyorum" klasik bir matematik kitabı değil. Matematik korkusunun nedenleri, çözümleri yolları, matematikte başarılı olma teknikleri; bu konularda ailelere, gençlere tavsiyelerde bulunan ve motivasyon yazıları içeren bir kitap.

Necip Güven, Matematikle Barışıyorum,Renk Yayınları, 302 Sayfa, Baskı 2004

Derek Haylock, Çocuklar İçin Matematiği Anlama


"Küçük yaştaki çocukların anlamakta zorlandığı ve onlara aktarmakta zorlandığımız sayılardan, geometriye, ölçmeden, veri analizine kadar bir çok karmaşık matematiksel kavramı olay ve anlaşılır şekilde anlatan bir başvuru eseri. Alanında uzman eğitimci ve akademisyenlerin çalışması ile Türkçeye çevrilen bu kitap, ülkemizde ilk yıllar matematiğinin öğrenimi ve öğretimi alanındaki mevcut ihtiyacın giderilmesine, şu ana dek yayınlamış olan eserleri tamamlayarak, geliştirerek ve mevcut bakış açılarına farklı boyutlar ekleyerek önemli katkılar sağlayacaktır.
Bu kitap, ileri düzey matematik konularının temelini oluşturan ilk yıllar matematiğinin öğretimi ve öğreniminin nasıl olması gerektiğini öğrenciyi merkeze alarak, sınıf ortamından uygulamalar, güncel araştırmalar ve somut etkinlikler ile açıklamaktadır. İnanıyoruz ki, bu kitap 3-8 yaş aralığındaki çocuklara matematiği öğreten veya öğretmek için eğitim alan kişiler için matematiği nasıl daha iyi anlayıp, öğreteceklerine dair yol gösteren temel bir kaynak olacaktır."

Derek Haylock, Çocuklar İçin Matematiği Anlama, Yayınevi: Sage Yayıncılık, Sayfa Sayısı: 344 Baskı Yılı: 2014, 

Hadis Tarihi 2 Konu Özeti

Hadis Tarihi 2 dersinden; ibadet,muamelat,sosyal hayat, ölüm ve ahiret konularına ait seçilmiş Hadis-i Şerif Türkçe Meallerini içeren konu özeti çalışmamızda ayrıca değerlendirme soruları ve cevapları da bulunmaktadır. Hadis-i Şeriflerin orjinal arapça metinlerini Hadis Tarihi 2 kitabında bulabilirsiniz.

Sitede bulunan tüm İlahiyat dersleri konu özetleri, üniversitenin kendi kitabından satır satır okunarak büyük bir emek sarfedilerek tarafımdan çıkarılmıştır. Kişisel kullanıma açık olarak dijital ortamda herkese sunulmuştur. Hal böyleyken kırtasiyecilerin veya diğer menfaatperestlerin hiçbir yazılı izin almadan, bilgi vermeden çıkarları uğruna bu özetleri ders notu/kitap vs. haline getirerek ticari olarak satması, kul hakkıdır. Vebaldir. Asla buna Rızam yoktur.  

| | Devamı... 0 yorum

Cosx=a ve Tanx=a Denklemleri ve Çözüm kümesi

Trigonometrik denklemlerin çözüm kümesi yapılırken, birim çember üzerinden fonksiyonların aynı noktadaki açıların her ikisi birlikte alınır. Bölgelere göre değişen açılar aynı noktadaki değere eşit olduğundan genel çözüm kümesi istendiğinde, bütün bu açıları ifade edecek şekilde çözüm kümesi yazılır.
 

Sinx=a Denklemi ve Çözüm Kümesi

Trigonometrik denklemlerin çözüm kümesi yapılırken, birim çember üzerindeki açıların trigonometrik fonksiyonlara göre aldığı değerler dikkate alınarak genel çözüm yapılır.Aşağıda verilen sinx denklemi için, sin fonksiyonu aynı değer için birinci ve ikinci bölgede iki farklı açıya sahiptir.Bu nedenle genel çözüm işleminde bu dikkate alınır.


Sinx=a tipindeki ve sinx=cosy tipindeki denklem çözümlerine bir örnek verebiliriz. Sin ve Cos denklemlerinde iki fonksiyon kendi aralarında dönüştürülerek yukarıda belirtildiği şekilde denklemin genel çözümü yapılır.

Ayrıca Bakınız:

Ters Dönüşüm Formülleri ve İspatları

Ters dönüşüm formülleri çarpım şeklinde verilen trigonometrik formüllerinin toplam biçimine dönüştürülmesi için kullanılır. Burada yer alan formüller sinüs ve cosinüs için bulunmuş olan formüllerdir. Bu formüller bulunurken toplam ve fark formülleri kullanılarak ispat yapılır. Toplam ve fark formülleri alt alta yazılıp toplanıp/çıkarılarak ters dönüşüm formülleri elde edilir. Formüllerin ezberlenmesinden ziyade nerede nasıl kullanılacağının bilinmesi daha önemlidir. Örneğin ters dönüşüm formülleri, fonksiyonun grafik çiziminde periyot hesabı için çarpım biçiminde verilen bir soruda kullanılabilir. Çarpım biçiminde verilen trigonometrik ifade toplam biçimine dönüştürülerek ayrı ayrı periyotlar bulunur. Bulunan periyotların e.k.o.k hesaplanarak istenen fonksiyonun esas periyodu belirlenir.





Dönüşüm Formülleri ve İspatları

Dönüşüm formülleri trigonometride kullanılan, toplam durumundaki iki trigonometrik ifadeyi çarpım haline getirmeye yarar. Bu formüllerinin kullanım amacı, bazı özel durumlarda sadeleştirmeye imkan vermesi açısından işlem kolaylığı sağlamasıdır. Dönüşüm formüllerinin ispatları yapılırken toplam ve fark formüllerinden yararlanılır. Aşağıda da gösterildiği gibi dönüşüm formülleri; iki açının trigonometrik oranlarının toplamı biçiminde verilen ifadeleri, iki ifadenin çarpımı biçiminde yazmak için kullanılır. Bu formül sayesinde toplam biçiminde verilen ifadeler, çarpım şekline dönüştürülerek kendi aralarında sadeleştirme işlemleri yapılabilir.Bu formüllerin ezberlenmesi için toplam ve fark formüllerinin ezberlenmesi yeterli olacaktır. Formüllerin ezbere bilinmesinden ziyade, öğrenilmiş bir formülün  nerede nasıl kullanılacağının bilinmesi matematik problemlerinin çözümünde daha önemli bir yere sahiptir.
Burada yer alan dönüşüm formüllerinin, trigonometrik toplam ve fark formülleri yardımıyla nasıl ortaya çıktığını göstermeye çalışalım. Benzer şekilde tanjant ve cotanjant dönüşüm formülleri de ispatlanabilir. 



Bu formülleri kolay biçimde ezberlemek için zihin haritanızda kendinize uygun kodlamalar yapabilirsiniz. Örneğin sık kullanılan kodlamalardan birine göre; TAC - FFS tekerlemesi kullanılabilir. (TAC: Toplamsa Aynısı al Cosla bitir.  FFS: Farksa farklısını al Sinle bitir.)

>>>TAC:Toplamsa ifadenin aynısı alınır, cosla bitirilir. 


Örnek: cosx+cosy= 2. cos (x+y)/2 . cos (x-y)/2 


Örnekte de görüldüğü gibi toplam olduğu için ifadenin aynısı alınmış ve cos ile bitirilmiştir.Yani cos aynısı alındı ve cosla bitti. burada dikkat edilmesi gereken nokta her zaman x+y önce daha sonra x-y gelecektir. 

>>>FFS: Farksa farklısını al Sinle bitir.

Örnek: sinx-siny= 2. cos (x+y)/2 . sin (x-y)/2


Örnekte de görüldüğü gibi fark işlemi olduğu için ifadenin farklısı alınmış ve sin ile bitirilmiştir.Yani cos ve sin olarak farklısı alındı ve sinle bitti. Burada dikkat edilmesi gereken nokta her zaman x+y önce daha sonra x-y gelecektir. 

Bazı kitaplarda kullanılan trigonometri formülleri ezberleme için hazırlanmış zihin haritalarını anlamak ve bunu zihinsel süreçlerle bellemek daha zor olabilmektedir. Bu nedenle kendinize uygun kodlamayı kendiniz hazırlayarak öğrenmeli veya en azından formüllerin nasıl çıkarıldığını yani ispatlarını bilmelisiniz. Unutmayın ki ezberlediğiniz şey ne olursa olsun tekrar edilmediği müddetçe unutulmaya mahkumdur, fakat formülün nasıl çıkarıldığını bilirseniz kendi kendinize formülü rahatlıkla biraz zaman alarak tekrar bulabilirsiniz.




Yarım Açı Formülleri ve İspatı

Bazı durumlarda trigonometrik toplam fark formülleri kullanmak yerine, iki aynı açının toplamını ifade eden yarım açı formülünü kullanmak daha kolaylık sağlayacaktır. Burada elde edilen formüllerin tamamı daha önce anlatılan (Bkz. Toplam/Fark formülleri) trigonometri kuralları yardımıyla bulunmuş formüllerdir. Bu formüllerden yararlanarak katlı açı formülleri de oluşturulabilir.

Kotanjant formülünün bilinmesine veya ezberlenmesine gerek yoktur. Sadece tanjant formülünün bilinmesi kotanjant fonksiyonu için yeterli olacaktır. Bu formüllerden daha önemlisi toplam veya fark formülleridir. Bu formüllerin iyi bilinmesiyle bütün yarım açı formüllerine ulaşılabilir. Aşağıda konu ile ilgili bazı örneklerin çözümü yapılmıştır.



Toplam-Fark Formülleri ve İspatları

Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu formüllerin iyi bilinmesi yarım açı, dönüşüm ve ters dönüşüm formüllerinin çıkarılması için gerekli olacaktır. Aşağıda sinüs,cosinüs,tanjant ve kotanjant fonksiyonlarının toplam ve fark formülleri verilmiş ve bunların nasıl ortaya çıktığı ispatlanarak gösterilmiştir. Kotanjant formülünün ispatı ayrıca gösterilmemiştir. Bu formülün ispatı için tanjantın ispatı bulunduktan sonra çarpma işlemine göre tersi alındığında kotanjantın değeri bulunmuş olur. 

cos fonksiyonun toplam ve fark eşitliği bulunduktan sonra trigonometrik fonksiyonların birbirine dönüşümleri kullanılarak sinüs fonksiyonun da toplam ve fark formülü elde edilir. Bu iki formülden yararlanarak da tanjant fonksiyonu ile cotanjant fonksiyonlarının toplam ve fark formülleri bulunur.  Tanjatın toplam formülü bulunurken finüs ve cosinüs fonksiyonlarının toplam fark formülleri yazıldıktan sonra birbirine oranlanır. sin(a+ b) ve cos (a+b) ifadelerinin eşiti yerlerine yazıldıktan sonra pay ve payda cosa.cosb ile bölünür. 


Başka bir ispat biçimi olarak aşağıdaki dik üçgenden, eş uzunluk parçaları kullanılarak toplam fark formülleri elde edilebilir.
Öğrencilerimizin sınavlara hazırlanırken sinüs,cosinüs ve özellikle tanjantın toplam ve fark formüllerini bilmesi yararlı olacaktır. Bu formüllerden sadece tanjantı ezberlemeniz durumunda bile pek çok soruyu çözebilirsiniz. Tanjantın formülünden bulduğunuz toplam veya fark açısından yola çıkarak tanjanta uygun bir üçgen çizerseniz trigonometrik oranlardan biri belli iken diğerinin bulunmasından yola çıkarak sizden istenen trigonometrik fonksiyonun değerini bu üçgen yardımıyla bulabilirsiniz.

Farklı bir yoldan,  bu formüllerin birim çember yardımıyla da ispatı mümkündür. Örnek olarak cosinüs fark formülünü birim çemberden şu şekilde ispatlayabiliriz.


Toplam ve fark formüllerinin ispatları cebirsel olarak gösterilebildiği gibi, geometrik olarak da gösterilebilir.Konu ile ilgili diğer yazımız için; (Bkz. Toplam/Fark Formüllerinin Geometrik İspatı) adresini inceleyebilirsiniz. 

Aşağıda yer alan örnekleri inceleyerek, formüllerin nasıl kullanıldığına dair bilgi sahibi olabilirsiniz.




Aşağıdaki Yazılar İlginizi Çekebilir!!!