Bir kare matrisin satır ve sütunlardaki her bir eleman için tüm eş çarpanları (kofaktörleri) tek tek bulunduktan sonra verilen matrisin determinantı, herhangi bir satır ya da sütuna göre açılım yaparak hesaplanabilir.
Adjoint Matris (Ek Matris)
Matrislerde elemanter satır işlemleri
Bir matristeki herhangi bir satır (veya sütundaki) tüm elemanlar bir Reel sayı ile çarpılıp farklı bir satır veya sütuna karşılıklı olarak eklenirse determinant değeri değişmez. Bu özellikten yararlanarak lineer denklem sistemlerinin çözüm kümeleri kolay bir şekilde bulunur. Matrisler kullanılarak doğrusal denklem sitemleri daha kolay çözümlenebilir. Elemanter satır veya sütun işlemi kullanılmadığında denklemler kendi aralarında karşılıklı yok etme metodu ile bilinmeyen sayısı en aza indirilerek çözüm kümesi bulunurken, determinant özelliği yardımıyla matris çözümü daha rahat yapılır. Elemanter satır ve sütun işlemleri;
Determinant Özellikleri
Determinant hesabı matrislerde önemli bir işlemdir. Bir kare matrisin satır ve sütunlardaki her eleman için tüm eş çarpanları (kofaktörleri) tek tek bulunduktan sonra verilen matrisin determinantı, herhangi bir satır ya da sütuna göre açılım yapılarak hesaplanabilir.(Bkz: Determinant Hesabı) Determinantın çeşitli özellikleri vardır. Bu özellikleri tek tek incelemeye çalışalım.
1) Bir matrisin deteminantı ile o matrisin transpozunun determinantı birbirine eşittir.
4) Bir matrisin bir satırındaki (veya sütunundaki) bütün elemanlar herhangi bir k Reel sayısı ile çarpılırsa o matrisin determinant değeri de k Reel sayısı ile çarpılır.5) Bir matrisin herhangi bir satır (veya sütunu) kendi arasında yer değiştirir ise determinant sonucu da işaret değiştirir.
10) Bir determinantta herhangi bir satırın (veya sütunun) tüm elemanları başka bir satıra (veya sütuna) ait kofaktör matrisleri ile karşılıklı olarak çarpılır ve elde edilen tüm sonuçlar toplanırsa toplam sonuç 0 olur.
Sarrus Kuralı
Determinant Hesabı
Bir
kare matrisin satır ve sütunlardaki her bir eleman için tüm eş
çarpanları (kofaktörleri) tek tek bulunduktan sonra verilen matrisin
determinantı, herhangi bir satır ya da sütuna göre açılım yaparak
hesaplanabilir. Bir matrisin kofaktör ve minörü ile ilgili ayrıntılı bilgiye ulaşmak için ilgili yazımızı okuyabilirsiniz. (Bkz: Bir matrisin kofaktörü)
Matrisin minörü ve kofaktörü
Matrisin minörü, bir matrisin her bir elemanının çıkarıldığı minör matrisi oluşturan işlemdir. Yani, bir matrisin herhangi bir satır ve herhangi bir sütunundan çıkarılan elemanlardan oluşan yeni bir matristir. Ana matristen bir sütun ve bir satır çıkartılarak elde edilen altmatrise kısa o mattidin minörü denir. Örneğin, 3x3'lük bir matrisin minörü, 2x2'lik bir altmatristir ve başlangıç matrisinden bir satır ve bir sütun çıkarılarak elde edilir. Hangi satır ve sütunun çıkarıldığı minörde indis biçiminde yazılarak gösterilir. Matrisin minörü, ana matrisin bir altkümesini temsil eder ve genellikle determinant ve ters matris hesaplamalarında kullanılır. Matrisin minörü, matrisin belirli bir elemanını dahil etmeyen kısmını ifade eder. Bu işlem, matris hesaplamalarında önemli bir rol oynar.Matris minörleri genellikle determinan hesaplamalarında ve lineer cebir problemlerinde kullanılır.
Bir matrisin minörü; genellikle o matrisin determinantını bulmak için kullanılır. Bir matrisin belirli bir minörünün determinantı, bu minör matrisin sütunları ve satırları üzerinden hesaplanarak belirlenebilir. Minörü bulmak, matrisin determinantını hesaplarken kritik bir rol oynar.
Kofaktör matrisi; bir matrisin her elemanının kofaktörlerini içeren matristir. Ana matrisin her elemanının kofaktörü, o elemanın bulunduğu satır ve sütun çıkarıldıktan sonra kalan determinantın değeridir. Kofaktör matrisi, bir kare matrisin her bir elemanının kofaktörlerden oluşan bir matristir. Kofaktör, bir matrisin her bir elemanı için oluşturulan yardımcı bir matristir ve genellikle matrisin determinantını hesaplamakta kullanılır. Bir matrisin kofaktör matrisi genellikle şu adımlarla bulunur:
1. Her bir elemana ait, satır ve sütunlar çıkarılarak minör matrisi bulun.
2. Minör matrislerin determinantını hesaplayın.
3. Hesaplanan determinanta göre her bir elemanın ayrı ayrı kofaktörünü pozitif veya negatif olarak belirleyin. Kofaktör, determinantın pozitif veya negatif olması, elemanın bulunduğu satır ve sütunun toplam değerine bağlı olarak belirlenir.
4. Satır ve sütun değerleri toplamı tek ise negatif, çift ise pozitif olur. Örneğin 2.satır 3.sütun elemanın kofaktörünü belirlerken (2+3=5 tek olduğundan) negatif işaret alınır.
5. Bütün bu hesaplamalardan sonra kofaktör matrisi elde edilir.
Bir kare matrisin Kofaktör matrisi, transpoze edilince o matrisin ek matrisi (adjoint matrisi) elde edilir. Ek matris, ek(A) şeklinde veya adj(A) şeklinde gösterilir. Adjoint matrisi, matrisin tersini bulmada kullanılır.Bir matrisin transpozu
Bir matrisin transpozu (devriği) matrisin satır ve sütunlarının yer değiştirilmesiyle oluşan yeni bir matristir. Bir matrisin transpozunun tekrar transpozu alınırsa tekrar kendisini verir. Doğrusal (lineer) cebirde, bir A matrisinin transpozu Aᵀ şeklinde ifade edilir.
Skalerle çarpım işleminde transpoze işlemi geçerli olur. Yani bir matrisin skalerle çarpımının transpozu, o matrisin transpozunun aynı skalerle çarpımına eşit olur. Toplam matris üzerinde transpoz alınırsa ayrı ayrı matrislerin transpozları toplamına eşit olur.
İki matrisin çarpımının transpozu alınırsa bu matrislerin transpozlarının çarpımlarında iki matris yer değiştirere çapma işlemi yapılır.
Kare matrisin kuvveti
Karesel Matris: satır ve sütun sayısının eşit olduğu, yani kare şeklinde olan matristir. Kare matris, boyutu nxn tipinde bir matristir. Kare matrislerde determinant hesaplanabilir ve tersi alınabilir. Ayrıca özdeğerler ve özvektörler gibi önemli matris özellikleri kare matrislerle ilgilidir. Özellikle fizik, matematik ve mühendislik gibi alanlarda sıkça karşımıza çıkarlar.
Bir kare matrisin kuvveti alınırken, verilen kuvvet kadar matris kendisi ile çarpılır. Birim matrisin tüm kuvvetleri kendisini verir.
Yüksek dereceden kuvvet alma işlemi yapıldığında birim matrise ulaşma çalışılır. Daha sonra matrisin kuvveti buna göre düzenlenerek yüksek mertebeden kuvvet alınmış olur.
Matrislerde çarpma işlemi
Matematik Konularından Seçmeler
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamı...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
Lütfen ilgili yazıların altında, yorumlarınızı bizimle paylaşınız. Kırık bağlantıları ve hatalı içerikleri mutlaka bildiriniz. Bizlere güzel dualar ederek destek olunuz...
KADİR PANCAR...