Determinant Özellikleri

Etiketler :

Determinant hesabı matrislerde önemli bir işlemdir. Bir kare matrisin satır ve sütunlardaki her eleman için tüm eş çarpanları (kofaktörleri) tek tek bulunduktan sonra verilen matrisin determinantı, herhangi bir satır ya da sütuna göre açılım yapılarak hesaplanabilir.(Bkz: Determinant Hesabı) Determinantın çeşitli özellikleri vardır. Bu özellikleri tek tek incelemeye çalışalım.

1) Bir matrisin deteminantı ile o matrisin transpozunun determinantı birbirine eşittir.

2) Bir matrisin herhangi bir satır veya sütunundaki tüm elemanları 0 ise o matrisin determinant değeri 0 olur. Bir matrisin herhangi iki satırın (veya sütunun) tüm elemanları aynı elemanlardan oluşuyorsa determinant değeri sıfır olur.

3) Herhangi bir matrisin bir satırındaki veya sütunundaki bütün elemanlar başka bir satır veya sütunda yer alan tüm terimlerle orantılı ile determinant değeri 0 olur.

 4) Bir matrisin bir satırındaki (veya sütunundaki) bütün elemanlar herhangi bir k Reel sayısı ile çarpılırsa o matrisin determinant değeri de k Reel sayısı ile çarpılır.
5) Bir matrisin herhangi bir satır (veya sütunu) kendi arasında yer değiştirir ise determinant sonucu da işaret değiştirir.

6) Determinant işleminde değişme özelliği sağlanır. Yani iki matrisin determinant hesabında, matrisler kendi arasında yer değiştirirse determinant sonucu değişmez. 
7) Determinant işlemi kuvvet alma veya matrisi bir Reel sayı ile çarpım işlemlerini sağlar.
8) Bir matriste herhangi bir satırdaki (veya sütundaki) tüm elemanlar, iki elemanın toplamı biçiminde yazılabiliyorsa determinant değeri de aynı sırada olmak şartıyla iki determinantın toplamı biçiminde yazılabilir.
9) Bir matristeki herhangi bir satır (veya sütundaki) tüm elemanlar bir Reel sayı ile çarpılıp farklı bir satır veya sütuna karşılıklı olarak eklenirse determinant değeri değişmez.  Bu özellikten yararlanarak lineer denklem sistemlerinin çözüm kümeleri kolay bir şekilde bulunur. (Bkz. Elemanter Satır -Sütun işlemleri) Matrisler kullanılarak doğrusal denklem sitemleri daha kolay çözümlenir. Elemanter satır veya sütun işlemi kullanılmadığında denklemler kendi aralarında karşılıklı yok etme metodu ile bilinmeyen sayısı en aza indirilerek çözüm kümesi bulunurken bu özellik yardımıyla matris çözümü daha rahat yapılır. (Bkz. Doğrusal Denklem Sistemleri)
10) Bir determinantta herhangi bir satırın (veya sütunun) tüm elemanları başka bir satıra (veya sütuna) ait kofaktör matrisleri ile karşılıklı olarak çarpılır ve elde edilen tüm sonuçlar toplanırsa toplam sonuç 0 olur.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • David Acheson, Geometrinin Sihirli Kitabı10.12.2023 - 0 YorumGeometri insan düşüncesinin en özgün üretimlerinden biridir. Bir yanıyla saf teoriye dayanırken bir yanıyla da gündelik hayatla iç içedir. Babil ve Mısır gibi medeniyetlerin tarlaların sınırlarını belirleme ve kadastro hesapları alanında…
  • Limitin Tarihçesi10.08.2011 - 0 Yorum Matematikçilerin, limit kavramının varlığından şüphelenmeye (bu kavramı sezmeye) başlamaları ile limiti tam olarak tanımlamaları arasında, yüzyıllarla ölçülebilecek kadar uzun zaman vardır. Hatta ilk çağ- larda bile limit kavramını hisseden…
  • Bekir Gür, Matematik Felsefesi23.04.2013 - 0 YorumEditör: Bekir S. Gür Yazar Bertrand Russell Reuben Hersh D. HILBERT PENELOPE MADDY L. E. J. Brouwer Paul BernaysHartry Field Michael D. Resnik Gregory Chaitin Douglas Gasking Kurt Gödel Paul Benacerraf Gözlem ve deneye dayanmadan matematik,…
  • Hucurat Suresinden Günümüze21.10.2011 - 0 YorumHucurât Sûresi, Mushaf’ta yer alma sırasına göre 49. suredir. Medine-i Münevvere’de inen surelerden olduğunda İslam alimleri arasında ittifak vardır. Sûre, adını dördüncü âyette geçen “Hucurât” kelimesinden almıştır. Hucurât ise, odalar demektir.…
  • İnsana sadakat yakışır görse de ikrah24.08.2012 - 0 Yorum İnsana sadakat yakışır görse de ikrah,  Yardımcısıdır doğruların Hazret-i Allah (Ziya Paşa) (İnsan hayatta tiksinti verici hilelerle, kötülüklerle karşılaşsa bile Allah’a ve vatanına sadakatten vazgeçmemelidir, Allah doğruların…
  • Erken Yaşta Müzik Eğitimi ve Matematik07.11.2014 - 0 Yorum "İzmir Üniversitesi Çocuk Gelişimi Bölümü Öğretim Üyesi Yrd. Doç. Dr. Elif Öztürk Yılmaztekin, müziğin çocuk gelişimi üzerinde büyük olumlu etkiye sahip olduğunu, enstrüman çalan çocukların matematik ve fen kavramlarını öğrenmeye daha…
  • Meryem Mirzakhani17.07.2017 - 0 Yorum İranlı kadın matematikçi Meryem Mirzakhani'nin vefatı bu alanda çalışma yapanları derinden etkiledi. Daha yakın zamanlarda Fields madalyasını alan ilk kadın matematikçi diye haberi yapılan Meryem Mirzakhani, kısa hayatının ardından dünyaya veda…
  • Yolculuk (Seferilik) Müddeti22.08.2010 - 0 YorumSeferin Anlamı ve Müddeti     249- Sefer ve Müsaferet, lügatta herhangi bir mesafeye gitmektir. Bunun karşıtı "ikamet"dir. Din yönünden sefer, belli bir uzaklığa gitmektir. Bu da orta bir yürüyüşle üç günlük bir mesafe (bazı fakihlere…