m(A) +m(D) = 180º, m(B) + m(C) = 180º’dir.
Net Fikir » Şubat 2017 Arşivi
Yamukta Özellikler ve İspatları
En az iki kenarı paralel olan dörtgene yamuk denir. ABCD yamuğunda, [AB] // [CD]’dır. Yamukta karşılıklı köşelerde yer alan açıların ölçüleri toplamı 180 derece olur.
Yamuğun paralel olan kenarları yamuğun tabanlarıdır. Paralel olmayan kenarları eşit uzunlukta olan yamuğa ikizkenar
yamuk denir. İkizkenar yamukta taban açılarının ölçüleri birbirine eşittir. İkizkenar yamukta köşegen uzunlukları eşittir. Yan kenarlardan biri tabanlara dik olan yamuğa dik yamuk denir. Yamukta paralel olmayan kenarların orta noktalarını birleştiren doğru parçasına "orta taban" denir.
Dörtgende Uzunluk Teoremleri ve İspatı
Bir dörtgende köşegenler birbirini dik olarak keser ise dörtgenin karşılıklı kenarlarının kareleri toplamı birbirine eşit olur. Bütün konveks dörtgenlerde bu genel özelliktir. Kuralın geçerli olması için köşegenlerin birbirini dik olarak kesmesi gerekir. Konkav dörtgende de aynı bağıntı geçerlidir. İspatı yapılırken dörtgenin iç bölgesinde oluşan üçgenlerde ayrı ayrı pisagor teoreminden yararlanılır.
** Bu şekildeki bir dörtgenin alanı da köşegenleri çarpımının yarısı kadardır. Köşegenler dik kesiştiği için Üçgende sinüs alan formülünden sin 90=1 olduğundan iki parça halinde üçgen toplamı olarak verilen dörtgen düşünülürse; köşegenleri dik kesişen dörtgenin alanı köşegenler çarpımının yarsı olur.
Dörtgende Açı Özellikleri ve ispatı
Dörtgenler bir çokgen çeşididir. Çokgenler kenar sayılarına göre isimlendirilmesi nedeniyle dört kenarı bulunan çokgene "dörtgen" ismi verilir. Dörtgenin açı özelliklerini bilebilmek için üçgen üzerindeki açı özelliklerini iyice kavramış olmak gerekmektedir.
TEOREM: Herhangi bir konveks dörtgenin iç açıları ölçüleri toplamı düzlem üzerinde 360 derecedir. Aynı şekilde dış açıları ölçüleri toplamı da 360 derecedir. Dörtgenin iç açılarının ölçüsünün toplamının 360 derece olduğunu göstermek için dörtgeni iki parçaya ayıracak şekilde bir tane köşegen çizilir oluşan üçgenlerde iç açılar tek tek yazılarak üçgenin açıları toplamı 180 derece olduğundan çizilen bu iki adet üçgenin iç açıları toplamı 2.180°=360° olarak bulunur. Altta bir çokgenin genel iç açıları toplamı formülünden dörtgenin iç açısı ölçüsü toplamı ispatı verilmiştir. Yukarıda anlattığımız ispat şeklinin matematik dilindeki gösterimidir.
TEOREM: Herhangi bir konveks dörtgenin iç açıları ölçüleri toplamı düzlem üzerinde 360 derecedir. Aynı şekilde dış açıları ölçüleri toplamı da 360 derecedir. Dörtgenin iç açılarının ölçüsünün toplamının 360 derece olduğunu göstermek için dörtgeni iki parçaya ayıracak şekilde bir tane köşegen çizilir oluşan üçgenlerde iç açılar tek tek yazılarak üçgenin açıları toplamı 180 derece olduğundan çizilen bu iki adet üçgenin iç açıları toplamı 2.180°=360° olarak bulunur. Altta bir çokgenin genel iç açıları toplamı formülünden dörtgenin iç açısı ölçüsü toplamı ispatı verilmiştir. Yukarıda anlattığımız ispat şeklinin matematik dilindeki gösterimidir.
İSPAT: Dörtgenin iç açılarının ölçüleri toplamı, (n–2).180° olup n = 4 kenar için, (4–2).180° = 360° bulunur. Konu ile ilgili aşağıdaki örnekleri inceleyiniz.
Aşağıdaki Yazılar İlginizi Çekebilir!!!
Matematik Konularından Seçmeler
matematik
(301)
geometri
(133)
ÖSYM Sınavları
(61)
trigonometri
(56)
üçgen
(49)
çember
(36)
sayılar
(32)
fonksiyon
(30)
türev
(26)
alan formülleri
(25)
analitik geometri
(23)
dörtgenler
(19)
denklem
(18)
limit
(18)
belirli integral
(14)
katı cisimler
(12)
istatistik
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(6)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)





