Binom Teoremi ve İspatı

Etiketler :
Tarihte Çin ve Hint aritmetiğinde kullanıldığı düşünülen binom teoremi ilk defa sistemli bir şekilde Ömer Hayyam (1044-1123) tarafından kullanılmştır. Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet/hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p, ile tam olarak tanımlanır.
Binom dağılımı için en basit örnek bir zarın 10 defa atılıp kaç tane 6 elde edildiğinin sayılmasıdır. Bu rastlatısal sayının (yani 10 deneyde kaç tane 6 elde edilmesi) dağılımı, n=10 ve p=1/6 parametreleri olan bir binom dağılımdır. Diğer bir örnek, çok büyük bir halk kitlesinin içinde yeşil gözlü olanların incelenmesinden ortaya çıkar. Araştırmamız yeşil gözlüler hakkında olduğu için başarı kategorisi yeşil gözlü kişi gözlemi için kullanılır ve başarısızlık kategorisi yeşil gözlü olmayan kişi gözlemi karşılığı olarak ele alınır. Bu halk kitlesi içindeki yeşil gözlüler oranının, (yani başarı olasılığının) %5 olduğu bilinsin. 100 kişiyi kapsayan bir basit rasgele örneklem seçelim ve örneklem içinde bulunan her bir kişinin göz rengini gözleyelim. Bu işlemin binom dağılım açıklamasına göre karşılığı 100 tane bağımsız deneme yapılmasıdır yani n=100 dur. Bu örnekde içinde gözlemi yapılan yeşil gözlü kişi sayısı, 0 ile 100 arasında değerler alabilen, X rastlantısal değişken olarak kabul edilsin. X için olasılık n=100 ve p=0.05 parametreleri olan bir binom dağılım ile bulunur. Binom dağılımını iki değişkenli harfli ifadede gösterdiğimizde;
Verilen bir harfli ifadenin açılımı yapılırken Pascal (Hayyam) üçgeninde gösterilen katsayılardan yararlanılır. Lakin buradaki katsayılar kuvvet büyük olduğu zaman soruların çözümünde kullanışsız hale gelebilir. Bu nedenle daha kolay bir şekilde belli terimlerin katsayılarını bulmak için binom teoreminden yararlanılır. Binom açılımlarına örnek vermek gerekirse;
Binom teoreminde kombinasyondan yararlanılarak, kaçıncı terimin katsayısı isteniyorsa kuvvete göre baştan veya sondan o terimin kuvvetle olana ilişkisinden yola çıkarak "r" sayısı tespit edilerek kolayca işlem yapılarak istenen terimin katsayısı bulunabilir.
Binom teoreminin ispatı yapılırken şu adımlar izlenir.

2 yorum:

  1. binom açılımında 15x2y4-6xy5 işleminde eksi artı olmayacakmı

    YanıtlaSil
    Yanıtlar
    1. İşlemde (-y) nin 5.kuvveti negatif olur.

      Sil

Popüler Yayınlar

Sosyal Paylaşım

Icon Icon Icon Icon

Lütfen yazılarımızla ilgili yorum yapmaktan çekinmeyin. Kırık linkleri ve hatalı içerikleri mutlaka bize ilgili sayfa altında yorum yaparak bildiriniz. Blog sayfalarımızda ilginizi çekebilecek diğer yazılar için blog arşivimizi kullanabilirsiniz.

Son Yorumlar

Yararlı Linkler