Seva (Ceva) Teoremi ve İspatı

Etiketler :

Seva teoremi kullanılırken üçgenin iç bölgesinde köşelerden geçmiş olan doğruların kesiştiği bir noktanın bulunması gerekir. Seva teoremi aslında menelaus teoreminin özel bir durumudur. Eğer bir üçgen köşlerinden geçen doğrular yardımıyla kenarları parçalanarak doğru parçaları oluşuyorsa bunların arasında menelaus teoremi gereği bir oran mevcut olur. Menelaus teoremi üçgene uygulanıp eşitlikler taraf tarafa bölünür veya çarpılırsa (uygulandığı konuma göre) seva teoremi elde edilir.


Bu teoremin menelaus teoremi ile ispatı yapılırken içerideki noktaların bir noktada kesiştikleri varsayılarak menelaus teoremi uygulanmıştır. Teoremin ikinci bölümünün ispatı da yapılacak olursa (yani varsayım ispatlanırsa) teorem tam olarak ispatlanmış olur.Bunun için aşağıdaki ispatı inceleyiniz.
İkinci bölümde (şimdi de (5)i varsayalım diye başlayan kısım) köşelerde inilen doğruların bir noktada kesiştiklerini göstermiş olur. Bu teorem kullanılarak aynı şekilde üçgenin kenarortaylarının, açıortaylarının ve yüksekliklerinin bir noktada kesiştikleri gösterilebilir.

2 yorum:

  1. Üçgende yüksekliklerin bir noktada kesiştiğini ceva teoreminden nasıl kanıtlarız?

    YanıtlaSil
    Yanıtlar

    1. Bir üçgende üç yükseklik bir noktada kesişir. Bu noktaya üçgenin diklik merkezi denir.Bir üçgende bir köşeye ait yüksekliğin karşı kenarı kestiği noktaya o köşeye ait dikme ayağı denir.Bir ABC üçgeninde A noktasından BC kenarına bir doğru parçası çizilip bu nokta şekilde H noktası ile gösterilirse H noktası A köşesine ait dikme ayağıdır. [AH] yükseklik, |AH| da yükseklik uzunluğudur. Bu durum sembolle |AH|=h biçiminde gösterilir. Bir üçgende bir köşeden karşı kenara indirilen dikme ayağının koordinatları; 1-Dik izdüşüm, 2-Bir noktanın bir doğruya olan uzaklığını bulma, 3-Bir kenar ve buna dik olan yüksekliğin ara kesitini bulma yöntemlerinden biri ile bulunur.Dik koordinat düzleminde noktalar alınarak üçgenin yüksekliklerinin tek noktada kesiştiği gösterilebilir.

      Seva teoreminin ispatı yapılırken ikinci bölümde kullanılan varsayım ispatı açıortay,kenarortay ve yüksekliklerin bir noktada kesiştiklerini göstermek için aynı şekilde kullanılır.

      Ayrıca geometriden yararlanılarak da ispat yapılabilir. Aşağıdaki linkte bu şekilde bir ispat yöntemi zikredilmiştir.

      http://muallims.blogspot.com.tr/2014/05/bir-ucgenin-yukseklikleri.html

      Sil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • İki Ormancının Hikayesi 31.10.2011 - 4 YorumBir ormanda iki ormancı, kurumuş ağaçları kesiyormuş. Birinci adam sabahları erkenden kalkıyor, gün boyunca hiç ara vermeden çalışarak, bir ağaç devrilirken hemen diğerine geçip ağaçları kesiyormuş. Bu adam gün boyu ne dinleniyor, ne de öğle yemeği…
  • Halk içinde muteber bir nesne yok30.08.2012 - 0 Yorum Halk içinde muteber bir nesne yok devlet gibi  Olmaya devlet cihânda bir nefes sıhhat gibi. (Kanuni Sultan Süleyman) Kanuni Sultan Süleyman'ın  Muhibbi mahlası ile yazdığı şiirin ilk iki beyitinin talik yazı stili ile Necmeddin…
  • Yeni matematik müfredatının karşılaştırılması07.07.2024 - 0 Yorum9.sınıfta doğrusal fonksiyonlar, 10. sınıfta gerçek sayılarda veya bir alt kümesinde f(x) = x2, f(x) = , f(x) = 1/x şeklinde tanımlı karesel, karekök, rasyonel referans fonksiyonlar ile bunlardan türetilen karesel, karekök ve rasyonel…
  • Farz Orucun Şartları ve Vakti13.03.2010 - 0 Yorum Orucun Şartları 39- Orucun farz oluşuna ve yerine getirilmesinin (edasının) farz oluşu ile sıhhatına dair şartlar vardır. Şöyle ki:     1) Oruçla mükellef olmak için İslâm, akıl ve büluğ şarttır. Onun için bu vasıfları toplamayan…
  • Mutlak Değer Fonksiyon Grafiği01.01.2014 - 0 Yorum Bir mutlak değer fonksiyonu verildiğinde grafiği çizilirken; öncelikli olarak fonksiyonun kritik noktaları tesbit edilir daha sonra buna göre fonksiyon parçalı fonkiyon biçimde belirlenen noktalara göre tekrar yazılır. Bu aşamadan sonra parçalı…
  • Hatemül Enbiya Peygamber Efendimiz-208.04.2011 - 1 Yorum İnsanlığı Allah’a davet hususunda, hayrı tavsiye ve irşad mahiyetinde; türlü bela, fitne ve musibetlere karşı daima sabır ve sükûnet içerisinde, Allaha teslimiyetin zirve yaptığı numune-i imtisal, mukaddes şahsiyet; Peygamber Efendimizdir.…
  • Altın Oranın Görüldüğü ve Kullanıldığı Yerler19.11.2008 - 0 Yorum Altın oran, matematik ve sanatta, bir bütünün parçaları arasında gözlemlenen, uyum açısından en yetkin boyutları verdiği sanılan geometrik ve sayısal bir oran bağıntısıdır. Eski Mısırlılar ve Yunanlar tarafından keşfedilmiş, mimaride ve sanatta…
  • Dörtgende Açı Özellikleri ve ispatı03.02.2017 - 1 Yorum Dörtgenler bir çokgen çeşididir. Çokgenler kenar sayılarına göre isimlendirilmesi nedeniyle dört kenarı bulunan çokgene "dörtgen" ismi verilir. Dörtgenin açı özelliklerini bilebilmek için üçgen üzerindeki açı özelliklerini iyice kavramış olmak…