Seva (Ceva) Teoremi ve İspatı

Etiketler :

Seva teoremi kullanılırken üçgenin iç bölgesinde köşelerden geçmiş olan doğruların kesiştiği bir noktanın bulunması gerekir. Seva teoremi aslında menelaus teoreminin özel bir durumudur. Eğer bir üçgen köşlerinden geçen doğrular yardımıyla kenarları parçalanarak doğru parçaları oluşuyorsa bunların arasında menelaus teoremi gereği bir oran mevcut olur. Menelaus teoremi üçgene uygulanıp eşitlikler taraf tarafa bölünür veya çarpılırsa (uygulandığı konuma göre) seva teoremi elde edilir.


Bu teoremin menelaus teoremi ile ispatı yapılırken içerideki noktaların bir noktada kesiştikleri varsayılarak menelaus teoremi uygulanmıştır. Teoremin ikinci bölümünün ispatı da yapılacak olursa (yani varsayım ispatlanırsa) teorem tam olarak ispatlanmış olur.Bunun için aşağıdaki ispatı inceleyiniz.
İkinci bölümde (şimdi de (5)i varsayalım diye başlayan kısım) köşelerde inilen doğruların bir noktada kesiştiklerini göstermiş olur. Bu teorem kullanılarak aynı şekilde üçgenin kenarortaylarının, açıortaylarının ve yüksekliklerinin bir noktada kesiştikleri gösterilebilir.

2 yorum:

  1. Üçgende yüksekliklerin bir noktada kesiştiğini ceva teoreminden nasıl kanıtlarız?

    YanıtlaSil
    Yanıtlar

    1. Bir üçgende üç yükseklik bir noktada kesişir. Bu noktaya üçgenin diklik merkezi denir.Bir üçgende bir köşeye ait yüksekliğin karşı kenarı kestiği noktaya o köşeye ait dikme ayağı denir.Bir ABC üçgeninde A noktasından BC kenarına bir doğru parçası çizilip bu nokta şekilde H noktası ile gösterilirse H noktası A köşesine ait dikme ayağıdır. [AH] yükseklik, |AH| da yükseklik uzunluğudur. Bu durum sembolle |AH|=h biçiminde gösterilir. Bir üçgende bir köşeden karşı kenara indirilen dikme ayağının koordinatları; 1-Dik izdüşüm, 2-Bir noktanın bir doğruya olan uzaklığını bulma, 3-Bir kenar ve buna dik olan yüksekliğin ara kesitini bulma yöntemlerinden biri ile bulunur.Dik koordinat düzleminde noktalar alınarak üçgenin yüksekliklerinin tek noktada kesiştiği gösterilebilir.

      Seva teoreminin ispatı yapılırken ikinci bölümde kullanılan varsayım ispatı açıortay,kenarortay ve yüksekliklerin bir noktada kesiştiklerini göstermek için aynı şekilde kullanılır.

      Ayrıca geometriden yararlanılarak da ispat yapılabilir. Aşağıdaki linkte bu şekilde bir ispat yöntemi zikredilmiştir.

      http://muallims.blogspot.com.tr/2014/05/bir-ucgenin-yukseklikleri.html

      Sil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Lys Sınav Stratejileri16.06.2016 - 0 Yorum LYS Adayları için sınav tavsiyesi; "1. Sınav anında önceden belirlediğiniz strateji ile soruları çözmeye başlayın, planladığınızın dışında bir yöntem izlemeyin. Sınavda macera peşine düşmeyin. 2. Çoktan seçmeli sınavlarda zaman yönetimi çok…
  • Dairede çevre ve alan özellikleri10.05.2021 - 0 YorumO merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Dairenin alanı;…
  • Sehiv Secdesi14.10.2010 - 0 YorumSehiv (Yanılma) Secdeleri ile İlgili Meseleler     327- Sehiv secdeleri, bir namazın vaciblerinden birini yanılarak terk etmekten veya geciktirmekten dolayı, o namazın sonunda yapılması gereken iki secde ile teşehhüdden, salavat ve…
  • Ankara İlitam 2.Sınıf 3.Dönem PDF Kitapları29.05.2013 - 0 YorumAnkara İlitam 2.Sınıf 3.Dönem PDF Kitapları: Burada yer alan ders kitapları, 2013-2014 Eğitim-Öğretim Yılı içindir. Burada yer alan bazı ders kitaplarının ünite ve konu başlıkları, iligili ders döneminden sonra değişmiş veya yeni bilgiler ilave…
  • Çarpım Türevi ve İspatı26.11.2016 - 1 Yorum Çarpım türevi alınırken fonksiyonları öncelikle çarpıp daha sonra türev almak daha zor olacağından çarpım türevini bilmek işlemlerde bizlere kolaylık sağlayacaktır. Kolayca formüle edilebilen çarpım türevine göre iki fonksiyon verildiğinde çarpım…
  • David Hilbert03.02.2010 - 0 YorumBir Alman matematikçisi olan David Hilbert, 1862 yılında Königsberg'de doğdu. 1895 ile 1929 yılları arasında Göttingen Üniversitesinde profesörlük yaptı. Yirminci yüzyılın başlarında, Alman matematik okulunun önderi sayılır. 1897 yılında cisim…
  • Trigonometrik Değerler Tablosu20.07.2018 - 0 Yorum Dar açıların trigonometrik değerleri hesap makinesi yardımıyla bulunabileceği gibi trigonometrik değerler cetvelinden de bulunabilir. Bunun için cetvelde öncelikle açı değeri bulunu ve sin, cos, tan ve cot sütunu le kesiştirilerek ifadenin…
  • Matematik Derslerinde Problem Çözme23.04.2013 - 0 Yorum "Problem çözmenin matematik öğretiminde, iki önemli ürünü vardır. Birincisi öğretilen konuya özel strateji ve kuralların gelişimi, ikincisi ise bir kuralı, formülü geliştirmek için kullanılabilecek düşünme yolları ve genel yaklaşımların…