Mükemmel Sayıların Keşfi

Etiketler :
Mükemmel Sayı; kendisi hariç, tüm pozitif tam bölenleri toplamı kendine eşit olan sayılardır. Örneğin 6 sayısının bölenleri 1,2,3 ve 6 dır. 6 hariç bu sayıların toplamı: 1+2+3=6 bulunur. Bu nedenle 6 sayısı mükemmel sayıdır.

Özellikle Avrupa'da yoğun olarak mükemmel sayılara ilgi gösterilmiştir. Mükemmel sayılara gösterilen tutkunun araka planında dini inanışların etkisi büyüktür. Şöyle ki; ilk mükemmel sayı olan 6'nın Tanrının dünyayı 6 günde yaratmış olması inancı ve Kameri ayının 2. ayı kadar,yani 28 gün olması da var.Mükemmel sayılar hakkında ilk defa bu dini inanışların da etkisi ile MS 100 civarındaNicomachus  ispat gereği duymadan tamamen sezgisel olarak şu özellikleri sıralıyor:1- N.ci. mükemmel sayının n basamağı vardır.(1. Sayı 6, 2. sayı 28 3.sayı 496, 4. sayı 8128) dikkat edelim ki henüz 5. mükemmel sayının kaç olduğu bilinmiyor. 2- Bütün mükemmel sayılar çifttir(sizin iddianız bu özelliği yok ediyor) 3- Bütün mükemmel sayılar sırasıyla 6 ve 8 ile biterler). 4- Herhangi bir k>1 için 2k-1 asal ise 2k-1(2k-1) bir mükemmel sayıdır ve mükemmel sayıların hepsini üreten bir algoritmadır. 5- Sonsuz sayıda mükemmel sayı vardır.Bu söylenenlerin doğruluğu/yanlışlığı sonraki yüzyıllarda daha net biçimde ortaya çıkmıştır.
Takip eden yüzyıllarda mükemmel sayılar konusuna gönül veren birçok matematikçi oldu. Yazılı kayıtlarda 4.'den sonraki mükemmel sayılara Arap matematikçi İsmail İbn İbrahim İbn Fallus'da(1194-1239) rastlıyoruz. Verdiği 10 mükemmel sayının ilk 7 tanesi doğru 3 tanesi hatalı. Nihayet 1536'da İtalyan matematikçi Pietro Cataldi 211-1 sayısının asal olmadığını (23.89=2047) gösterdi. Bir asal sayı olan 213-1=8191 'dan hareketle 212 (213-1)=33550336'nın bir mükemmel sayı olduğunu da buldu. 5. mükemmel sayı 8 basamaklıydı.

Nicomuchos'un iddialarından 1. 3. 4. zamanla çürütüldüler. 6. sayı 1555'de J.Scheybl tarafından bulundu ise de 1977'ye kadar farkına varılmadığından mükemmel sayılar konusundaki gelişmelere katkısı olmadı.. 6. mükemmel sayıyı tekrar ve Scheybl den bağımsız olarak bulan gene Cataldi (1603) idi: 216 (217-1)=8589869056. Bu sıra 8 de olmasına rağmen tekrar 6 ile biten bir mükemmel sayıydı. Cataldi 7. mükemmel sayıyı da bulan matematikçi oldu: 218 (2191)=137438691328.
Mükemmel sayılarla ilgili çalışan matematikçilere Pierre de Fermat Rene Descartes ve Marin Mersenne gibi ünlüleri de dahil edelim. Bu çalışmalar sırasında Mersenne Asalları'nın da bulunduğunu Fermat'nın küçük teoremi adıyla ünlü teoremin bu çalışmaların eseri olduğuna değindikten sonra 8. mükemmel sayıyı bulan Euler'e gelelim: Euler kendinden önceki matematikçilerden farklı olarak tek mükemmel sayıların da olabileceğini ileri sürdü. Günümüze kadar bu konuda yapılmış olan çalışmalar ne bu iddianın doğruluğunu ne de yanlışlığını ispatlamaya yetmemiştir.
Euclid ilk dört mükemmel sayı üstünde yaptığı araştırmalarda şöyle bir formül ile tanımlanabildiklerini keşfetmiştir: 2p−1(2p−1)p sayısı ise asal bir sayıdır. Buna göre ilk dört mükemmel sayı şu şekilde hesaplanabilir:
p = 2:   21(22−1) = 6
p = 3:   22(23−1) = 28
p = 5:   24(25−1) = 496
p = 7:   26(27−1) = 8128.

2p−1(2p−1) formülüne göre, ilk 40 çift mükemmel sayıyı hesaplamak için p değişkeninin değeri şunlardan biri olabilir: p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609.

6,28,496,8128....... sayıları mükemmel sayılardır. Formülde p yerine yukarıdaki değişkenler yazılarsa yeni mükemmel sayılar bulunabilir. Bu sayılar arasında başka mükemmel sayılar (çift ve ya tek) olup olunmadığı bilinmemektedir.Tek mükemmel sayıların varlığı ve ya yokluğu tam olarak kanıtlanamamışlardır. Ama ya olabildiğince az oldukları ve ya olmadıkları düşünülmektedir.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Piramitin Alanı ve Hacmi11.01.2012 - 2 Yorum Tabanı herhangi bir çokgen olan ve bu çokgenin tüm noktaları çokgen düzleminin dışındaki bir noktaya birleştirildiğinde oluşan şekil piramittir. Piramitler tabanlarına göre adlandırılırlar. Üçgen piramit, kare piramit, altıgen piramit. Tabanı…
  • Oruç Kefareti22.09.2008 - 0 Yorum Geceden niyetli orucunu, kasten bozana kefâret lâzım geldiği din kitaplarının hepsinde yazılıdır. Kütüb-i sitte isimli meşhûr altı hadîs kitâbından Buhârî, Müslim, Ebû Dâvüd, Tirmizî ve Nesâî'de mevcûttur. Hz. Ebû Hüreyre'nin rivâyet ettiği hadîs-i…
  • Algoritmada akış diyagramları19.02.2025 - 0 YorumAlgoritmada akış diyagramlarından yararlanılarak çözüm basamakları adımlandırılır. Akış diyagramı, algoritmaların şekil ve sembollerle ifade edilmesidir. Akış şemasında her adım birbirinden farklı anlamlar taşıyan şekillerden oluşur ve adımlar…
  • İkizkenar üçgende yardımcı elemanlar02.04.2021 - 0 YorumÜçgenin yardımcı elemanları, kenarortay, yükseklik ve açıortaydır. Taban açıları birbirne eşit olan üçgene ikizkenar üçgen denir. İkizkenar üçgende, eş açıların karşısındaki kenarların uzunlukları birbirine eşittir. İkizkenarlara ait, yükseklik,…
  • Yeni matematik müfredatının karşılaştırılması07.07.2024 - 0 Yorum9.sınıfta doğrusal fonksiyonlar, 10. sınıfta gerçek sayılarda veya bir alt kümesinde f(x) = x2, f(x) = , f(x) = 1/x şeklinde tanımlı karesel, karekök, rasyonel referans fonksiyonlar ile bunlardan türetilen karesel, karekök ve rasyonel…
  • İtikafı Bozan Durumlar28.03.2010 - 0 Yorum    İtikâfı Bozan ve Bozmayan Şeyler     271-İtikâf halinde olan bir kimsenin dinî ve tabiî ihtiyaçları için zaruri olarak mescidden dışarı çıkması, itikâfı bozmaz.Örnek: İtikâfda bulunanın (mutekifin) cuma namazını kılmak…
  • Üçgende Ağırlık Merkezi İspatı08.04.2013 - 1 YorumKenarortay, bir üçgenin herhangi bir kenarını iki eşit parçaya ayıran o kenara karşı köşesinden çizilen doğru parçasıdır. Üçgende kenarortaylar, üçgenin iç bölgesinde bir noktada kesişirler. Bir üçgenin bütün kenarortayların kesişim noktasına, o…
  • Açıortay ve Özellikleri06.04.2020 - 0 YorumHerhangi bir açının ölçüsünü iki eş açıya bölen ışınlara açıortay denir. Eğer üçgenin iç açısını iki eşit ölçülü açıya bölen bir ışın varsa buna "iç açıortay" denir. Aynı durum üçgenin dış açısı için geçerli ise o zaman bu ışına "dış açıortay" adı…