Açıortay dikmeleri ile ilgili diğer özellikler için farklı bir konu başlığı altında yazdığımız yazıyı da inceleyebilirsiniz. (Bkz.Açıortay Dikmeleri)
Net Fikir » üçgen » Açıortay Teoremleri ve İspatı
Açıortay Teoremleri ve İspatı
Etiketler :
açıortay
açıortay teoremi
geometri
ispat
matematik
teorem ispatları
üçgen
Herhangi bir üçgende iç açıortay veya dış açıortay çizilmiş olursa, buna bağlı olarak özel teoremler yazılabilir. Teoremler yazılırken üçgenlerde benzerlik ilişkisinden yararlanılır.
Açıortay ister iç ister dış açıortay olsun üçgenin köşe noktasından üçgenin kenarına bir paralel çizildiğinde benzer üçgenleri oluşturmak mümkün olur. Benzerlik yardımıyla karşılıklı eş açıların karşılarındaki kenarların birbirlerine oranları sabit olduğundan özel olarak iç açıortay teoremi ve dış açıortay teoremleri bulunur.
İç açıortay teoreminin farklı bir çizimle ispatı yukarıdaki gibi verilmiştir. Yine A.A.A benzerlik kuralından yararlanarak, benzer üçgenlerin kenarları arasındaki orandan iç açıortay teoremi elde edilir. Aynı çizimi dış açıortay içinde kullanarak, dış açıortay teoremi Thales teoreminden yararlanarak ispatlanabilir. İspatı yapılırken benzer açılar ve kenarların oranlarına bakılır. (Bkz. Thales Teoremleri)
İç ve dış açıortay teoreminde kenarların oranları tamamen benzerlik teoremlerinin bir sonucudur. Benzerlik teoremleri de soruların çözümünde kullanılabilir. (Bkz. Eşlik ve Benzerlik Teoremleri) Her defasında benzerlik teoremlerini kullanmak yerine, açıortay ile elde edilmiş buradaki sonuçları kullanmak, soru çözümlerinde kolaylık sağlayacaktır. İç ve dış açıortay teoremlerinin uygulama örneklerini, aşağıda inceleyerek teoremleri daha iyi kavramaya çalışınız.
Takip et: @kpancar |
|
''Açıortay Teoremleri ve İspatı'' Bu Blog yazısı;
Mayıs 22, 2013 tarihinde açıortay, açıortay teoremi, geometri, ispat, matematik, teorem ispatları, üçgen kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca 5 yorumlu bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali&quo...
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu f...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
Teşekkürler!!
YanıtlaSilbaşka teorem yok mu
YanıtlaSilÜçgende açıortay ile ilgili lise müfredatında geçen iç ve dış açıortay teoremleri vardır. İç ve dış açıortay teoremlerinin ispatı da burada verilmiştir.Örneklerde teoremlerin uygulamalarına da ayrıca yer verilmiştir.
Sil90-m(A)/2 ve 90+m(A)/2 kuralları yokmu onlar niye ispatlanmamış
YanıtlaSilBurada sadece açıortay teoremi uzunluk ilişkisi verilmiş. Söylediğiniz teoremler üçgende açı özellikleri ile ilgili.
Sil