Piramitin Alanı ve Hacmi

Etiketler :
Tabanı herhangi bir çokgen olan ve bu çokgenin tüm noktaları çokgen düzleminin dışındaki bir noktaya birleştirildiğinde oluşan şekil piramittir. Piramitler tabanlarına göre adlandırılırlar. Üçgen piramit, kare piramit, altıgen piramit.
Tabanı düzgün çokgen olan ve yüksekliği tabanın ağırlık merkezinden geçen piramitlere de düzgün piramit adı verilir. Taban şekli kare olan piramitlere düzgün kare piramit denir. Kare piramidin tabanı kare biçimindedir. Yan yüzeyleri ise dört adet ikizkenar üçgenden oluşur.İkizkenar üçgenlerin taban uzunlukları piramidin tabanının bir kenarına eşittir.Tabanı eşkenar üçgen olan piramitlere eşkenar üçgen piramit denir.

Bir dik piramitte eğer tabandaki şekil bir düzgün çokgen (bütün kenar ve açılar eş) ise; dönme simetri açısı 360/(kenar sayısı) formülü ile bulunur. Dik piramidin hacmi, eş tabana ve eş yüksekliğe sahip prizmanın hacminin üçte birine eşittir. Bir piramiti tabana paralel bir düzlemle kestiğimizde, taban ile düzlem arasında kalan kısmına kesik piramit denir.
Kesik piramidin genel hacmi taban alanları ve yüksekliği bilindiğinde aşağıdaki ispatı yapılan formül kullanılarak bulunabilir. Bu formül kullanmadan da kesik piramid; tam piramid gibi düşünülerek, büyük piramid hacminden üstte kalan küçük piramid hacmi çıkarılarak da kesik piramidin hacmi bulunur.
Bir kesik piramitte kesit alanının yüzey alanını bulmak için iki üçgenin benzerliğinden yararlanarak gerekli uzunluklar bulunu ve bundan sonra alanı hesaplanır.
Piramidin hacmi tabanının alanı ile yükseklik uzunluğunun çarpımının üçte biridir. Bir dik piramidin hacmi eş tabanlı ve eş yüksekliği olan bir prizmanın hacminin 1/3 üne eşittir.Tabanı düzgün altıgen olan piramide düzgün altıgen piramit denir. Altıgen piramitte yan yüzeyleri altı adet eş ikizkenar üçgenden oluşur.
Piramidin hacmi tabanda yer alan şekle göre değişiklik gösterir. Bu nedenle tabanda yer alan şekil ne ise öncelikle onun alanı bulunur daha sonra yükseklik bulunarak prizma hacmi hesaplanıyor gibi taban alanı ile yükseklik çarpılır ve 1/3 ü alınarak piramitin hacmi bulunur.
Kesik piramidin genel hacmi taban alanları ve yüksekliği bilindiğinde yukarıda ispatı yapılan formül kullanılarak bulunabilir. Bu formül kullanmadan da kesik piramid; tam piramid gibi düşünülerek, büyük piramid hacminden üstte kalan küçük piramid hacmi çıkarılarak da kesik piramidin hacmi bulunur.
Dört yüzü de eşkenar üçgen olan piramite düzgün dörtyüzlü denir. Bu piramitin yüzey alanı eşkenar üçgenin alanın dört ile çarpılmasıyla bulunur.Düzgün dörtyüzlüde Yükseklik, tabanı oluşturan üçgenin ağırlık merkezine iner.Bütün ayrıtları birbirine eş ve yüzeyleri sekiz eşkenar üçgenden oluşan cisme düzgün sekizyüzlü denir. Cismin, ortak tabanlı iki adet kare piramitten oluştuğunu düşünürsek piramitlerin yüksekliği; bir piramitin yüksekliğinin iki katı kadar olur.

2 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Doğruların Grafiğini Çizme14.03.2009 - 0 Yorum Doğruların Grafikleri:Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur. x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır. Eğer bir doğrunun eksenleri kestiği x ve y…
  • Bursalı Kadızade Rumi08.03.2012 - 0 Yorum Bursalı Kadızâde Rumi, soyca ilim sahibi bir aileden gelmiş olup, çağının bilim otoritelerinden Bursa kadısı Mehmet Çelebi’nin oğludur. Bursa ve çevresinde daha çok "Kadızade" olarak tanındı. Matematik, astronomi ve Hanefî mezhebî fıkıh âlimi.…
  • Smith Sayısı (Wilansky)28.05.2013 - 0 Yorum1 den büyük asal olmayan bir tamsayının rakamlarının toplamı,  sayı asal çarpanlarına ayrılarak yazıldığında bu yazılışta bulunan  tüm asal çarpanların rakamlarının toplamına eşit oluyorsa bu tür   sayılara Smith…
  • Sehiv Secdesi14.10.2010 - 0 YorumSehiv (Yanılma) Secdeleri ile İlgili Meseleler     327- Sehiv secdeleri, bir namazın vaciblerinden birini yanılarak terk etmekten veya geciktirmekten dolayı, o namazın sonunda yapılması gereken iki secde ile teşehhüdden, salavat ve…
  • Bir fonksiyonun bir noktada sürekliliği03.02.2024 - 0 YorumSüreklilik matematik ve bir çok bilim dalında uygulamaları olan önemli bir kavramdır.  Bir fonksiyonun herhangi bir noktada sürekli olması için öncelikle o noktada tanımlı bir fonksiyon olması gerekir. Tanımsız olan bir noktada süreklilik…
  • Kaside-i Bürde Türkçesi08.05.2012 - 0 Yorum Kaside-i bürde’nin yazarı olan İmam-ı Busayri hazretleri, Sofiyye-i aliyyenin büyüklerindendir. Bir gün felç oldu, bedeninin yarısı hareketsiz kaldı. Resulullah’a tevessül edip, insanların en üstününü öven meşhur kasidesini hazırladı. Rüyada…
  • Matematik Başarısını Etkileyen Faktörler23.04.2013 - 0 Yorum Matematik öğretiminde yaşanan sorunlar ve çözüm önerilerini içeren çok güzel bir makaleyi sizinle paylaşmak isitiyorum. Makale Gazi Üniversitesi Eğitim Fakültesi Dergisinden alıntılanmıştır. "Matematik, insanlar tarafından iyi bir yaşamın ve iyi…
  • Toplam-Fark Türevi İspatı26.11.2016 - 0 YorumToplam veya fark durumunda bulunan fonksiyonların türevi alınırken fonksiyonların ayrı ayrı türevi alınıp, daha sonra bulunan türev değerleri toplanır veya çıkarılır. İSPAT: İspatı yaparken; türevin limit tanımından yararlanarak…