Net Fikir » pi sayısı » Srinivasa Ramanujan
Srinivasa Ramanujan
Etiketler :
matematikçiler
pi sayısı
Srinivasa Ramanujan 1887 yılında Güney Hindistan’daki bir küçük kentte, pek varlıklı olmayan bir ailenin çocuğu olarak doğdu. Okul arkadaşları ile aynı şekilde matematik öğrenerek büyüdü, ancak kısa sürede onun bu alanda arkadaşlarından çok önde olduğu ortaya çıktı. Hatta matematiği çok sevdiğinden dolayı, diğer derslerine gereğinden az zaman ayırınca, derslerinde başarısız olunca yüksek eğitim şansını da kaybetti.
25 yaşına geldiğinde, Madras’ta evli ve düşük ücretle çalışan bir katipti. O zaman bile matematikle uğraşmaktan vazgeçmemişti. Defterleri yazdığı çok çeşitli denklemlerle dolu idi. Bu denklemler arasında pi sayısının yaklaşık çözümünü bulmakla ilgili olanlarda vardı. Ama kanıt göstermeye, yöntemlerini göstermeye gelince ortaya fazla bir şey çıkamıyordu. Hesaplıyor, teoriler üretiyordu ama bunları paylaşabileceği kimsede yoktu etrafında, kendi sayılar dünyasında yapayalnızdı.
Ramanujan 1913’te çalışmalarından birkaç sayfalık kısmı, önde gelen üç İngiliz matematikçisine gönderdi. Bunlardan ikisi onu reddetti ancak üçüncü matematikçi G.H. Hardy onun mektubunu aldığı zaman dikkate değer buldu ve Ramanujan’ı İngiltere’ye çağırdı.
“Bu buluşların doğru olması gerekir, çünkü eğer doğru değillerse, hiç kimse onları icat edecek hayalgücüne sahip olamaz – G.H. Hardy “
Süreç içinde bu ikili çoğu zaman öğretmen – öğrenci rollerini değişerek çalışmaya başladılar birlikte. Ramanujan’ın hiç matematik eğitimi yoktu ama konuları sezgisel kavrayışı olağanüstüydü.
İngitere’de Ramanujan sadece klasik matematiği değil aynı zamanda Batı kültürünü de öğrendi. Ancak yemekleri çatal, bıçakla yemekten ve ayaklarını ayakkabılar içine hapsetmekten hiç hoşlanmamıştı. Birinci Dünya Savaşı’nın başlamasından kısa süre sonra Ramanujan, olası alıştığı beslenme biçimini sürdürememesi ve ciddi vitamin eksikliği nedeniyle hastalandı, uzun süre sanatoryumlara girdi, çıktı. Savaş ardından, 1919’da Hindistan!a yolculuk yeniden güvenli olunca, Ramanujan ülkesine döndü. Buesna’da halen defterlerine birbirinden ilginç hesaplamalar yapmaya devam ediyordu. Bir yıl sonra, 32 yaşındayken öldü.(26 Nisan 1920)
Aradan geçen zaman zarfında günümüzde bile halen matematikçiler bu dahinin denklemlerini anlamaya çalışıyorlar. Denklemleri güncel problemlere uyguluyorlar, algoritmalar geliştiriyorlar. 1980’lerin ortalarında Jonathan ve Peter Borwein, pi sayısını hesaplamak için, Ramanujan’ın denklemlerini temel alan güçlü bir yöntem geliştirdi.
Yöntem yenilenen denklemlerdi. Yani pi’ye daha da yakın bir yaklaştırma elde etmek için, hesaplama sonucunu formüle tekrar yerleştirme. Sonuçlar inanılmazdı çünkü her hesaplamada bulunan basamak sayısı katlanarak artıyordu. Matematikçilerin çoğu gibi Ramanujan da pi’yi araştırma dürtüsüne karşı koyamamıştı. Eğer daha uzun yaşasaydı başka neler keşfedebilirdi? Bu sorunun yanıtı, pi’nin kendisi kadar gizem içine gömülüdür…
Kaynakça: Pi Coşkusu, David Balther, s. 64-66
Takip et: @kpancar |
|
''Srinivasa Ramanujan'' Bu Blog yazısı;
Nisan 26, 2017 tarihinde matematikçiler, pi sayısı kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamı...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkara...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...