Trigonometrik Fonksiyonların Grafikleri

Trigonometrik fonksiyonların grafiklerinde bazı ortak özellikler bulunur. Bunlar periyodiklik, süreklilik, kesiklik ve simetridir. Periyodiklik, grafiğin belirli bir aralıkta kendini tekrar etmesi anlamına gelir. Sinüs ve kosinüs fonksiyonları sürekli, tanjant ve kotanjant fonksiyonları ise belirli aralıklarda kesiklidir. Ayrıca sinüs ve tanjant fonksiyonları tek fonksiyon, kosinüs ve kotanjant fonksiyonları ise çift fonksiyon özelliği gösterir. Bu durum grafiğin eksenlere göre yansımasını ve genel şeklini belirler. Trigonometrik fonksiyonların grafiklerinin çizimi, bu fonksiyonların temel özelliklerinin ve bu özelliklerin grafik üzerindeki etkilerinin sistematik biçimde incelenmesiyle yapılır. Bu süreçte genellikle periyot, genlik, faz farkı ve dikey kayma gibi ortak nitelikler dikkate alınır. 
Grafikler çizilirken belli adımlara dikkat etmek gerekir. y=a.sin⁡(bx+c)+d şeklindeki bir trigonometrik fonksiyonda a fonksiyonun genliği, b fonksiyonun periyodu, c faz değeri (yatay kayma değeri), d dikey kayma değeri olarak tanımlanır. a, b, c ve d değişkenlerine göre grafik çizimi yapılır.

Ters Trigonometrik Fonksiyonlar

Ters trigonometrik fonksiyonlar, (arcsin, arccos, arctan arccot) trigonometride değeri bilinen bir fonksiyon için o değeri veren açıyı bulmak için kullanılır. Yani “bir trigonometrik oranı verildiğinde, o orana sahip fonksiyon adını ve açıyı bulmak” için ters trigonometrik fonksiyonlar kullanılır. Ters trigonometrik fonksiyonlar sadece soyut matematikte değil, mühendislikten fiziğe kadar birçok alanda kullanılır. Eğim açısı, fırlatma açısı, yansıma açısı gibi durumlarda kullanılır. Örneğin bir topu fırlatıldığında, topun hızı ve yer değiştirmesi biliniyorsa, atış açısını bulmak için arctan kullanılır. Örneğin Trigonometride cos değeri 1/2 olan açı için arccos(1/2) yazılır ve buradan 60⁰ açısı elde edilir.  GPS sistemlerinde iki nokta arasındaki açısal yön hesaplanırken ve nesnelerin yönünü, kameraların bakış açısını veya robot kollarının dönme açısını hesaplamak gibi sebeplerle ters trigonometrik fonksiyonlar kullanılır. 
Trigonometrik fonksiyonlar periyodik fonksiyon olduğundan belirli aralıklarda tanımlanarak ters fonksiyonları bulunur. 
 

Sinüs Fonksiyonu Grafiği

Sinüs fonksiyonunun grafiği, y =sin(x) şeklinde tanımlanan periyodik bir eğridir. Fonksiyonun tanım kümesi tüm reel sayılar, değer kümesi ise [−1,1] aralığıdır. Sinx fonksiyonun periyodu 2π’dir; yani sinüs değeri her 2π birimlik artışta kendini tekrar aynen eder. Grafik çizilirken bazı özel açı değerleri alınarak bunlara karşılık gelen y değerleri bulunur ve bu noktalar koordinat düzleminde gösterilir. 

Sinüs teoremi ve ispatı

Sinüs teoremi, bir üçgende (kirişler üçgeni) bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Bir açının sinüsü trigonometri bilgisinden hatırlanacağı üzere, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün (dik açının karşısında kalan kenarın) birbirine oranıdır. Kısaca açının sinüsü, karşı dik kenar uzunluğunun hipotenüse oranıdır. Sinüs teoremi, bir açı ve iki kenar verildiğinde; bilinmeyen bir açıyı bulmak veya iki açı ve bir kenar verildiğinde de bilinmeyen bir kenar uzunluğunu bulmak için oldukça yararlı bir teoremdir.

Sinüs ve Cosinüs Fonksiyonları

Trigonometrik Fonksiyonlar merkezi orijin ve yarıçapı 1 br olan birim çember üzerinde gösterilerek buradaki geometri ve analitik bilgileri yardımıyla tanımlanır. Birim çember üzerinde alınan herhangi bir noktanın orijinde oluşturduğu merkezil açının, sinüs ve cosinüs gibi trigonometrik değerleri analitik geometri yardımıyla ifade edilir. Birim çember üzerinden rastgele seçilen bir P noktasının apsis değeri o merkezil açıya ait cosinüs değerini verir. Aynı şekilde  P noktasının ordinat değeri o merkezil açıya ait sinüs değerini verir. Aşağıdaki şekilden bu tanım görülebilir.

Üçgende Alan Bağıntıları

Üçgenin alanı için yüksekliğin bilinmesi gerekebilir. Bir üçgenin herhangi bir köşesinden, karşı kenarına indirilen dikmenin karşı kenarı kestiği nokta ile köşeyi birleştiren doğru parçasına, üçgenin o kenarına ait yüksekliği denir. Üçgenin yükseklikleri, üçgenin çeşidine göre( dar açılı, dik açılı veya geniş açılı) üçgenin iç bölgesinde, üçgenin dış bölgesinde veya ügenin üzerinde kesişebilir. Geniş açılı üçgenlerde yüksekliğin, tabanın uzantısından çizileceğini unutmayınız.

Toplam ve Fark Formülleri Geometrik İspatları

"Bu geometrik ispat biçimi, Leonard M. Smiley, Alaska Üniversitesi tarafından kosinüs ve sinüs için trigonometrik toplama ve çıkarma formülleri delillerini göstermek için ortaya konmuştur. Toplam ve fark formüllerinin geometrik ispat biçimleri Matematik Dergisi'nin Aralık,1999 sayısında yer almıştır.

Burada yer alan ispat ve deliller sadece "dar" açılar için geçerlidir, ama tamamen sentetik ve minimal diyagram kullanan Öklid geometrisinde yaygın olarak kullanılır. Buradaki deliller kartezyen koordinatları kullanarak standart analitik ispat için ortak olmayacak şekilde genel bir ispat biçimi sunmaya tamamlayıcı niteliktedir." orjinal metin:(http://math.uaa.alaska.edu/~smiley/trigproofs.html)

Aşağıda toplam ve fark formüllerinin geometrik olarak nasıl ispatlanabileceğini gösteren şekiller çizilmiştir. Açıklamalara göre bu toplam ve fark formülleri verilen dar açılar için geçerli olarak geometrik ispatları yapılmış olur.
 
Şekil 1: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada alfa açısının tanjant değerinden cos(a+b) değeri geometrik olarak gösterilmiş olur.

Ters Dönüşüm Formülleri ve İspatları

Ters dönüşüm formülleri çarpım şeklinde verilen trigonometrik formüllerinin toplam biçimine dönüştürülmesi için kullanılır. Burada yer alan formüller sinüs ve cosinüs için bulunmuş olan formüllerdir. Bu formüller bulunurken toplam ve fark formülleri kullanılarak ispat yapılır. Toplam ve fark formülleri alt alta yazılıp toplanıp/çıkarılarak ters dönüşüm formülleri elde edilir. Formüllerin ezberlenmesinden ziyade nerede nasıl kullanılacağının bilinmesi daha önemlidir. Örneğin ters dönüşüm formülleri, fonksiyonun grafik çiziminde periyot hesabı için çarpım biçiminde verilen bir soruda kullanılabilir. Çarpım biçiminde verilen trigonometrik ifade toplam biçimine dönüştürülerek ayrı ayrı periyotlar bulunur. Bulunan periyotların e.k.o.k hesaplanarak istenen fonksiyonun esas periyodu belirlenir.





Toplam-Fark Formülleri ve İspatları

Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu formüllerin iyi bilinmesi yarım açı, dönüşüm ve ters dönüşüm formüllerinin çıkarılması için gerekli olacaktır. Aşağıda sinüs,cosinüs,tanjant ve kotanjant fonksiyonlarının toplam ve fark formülleri verilmiş ve bunların nasıl ortaya çıktığı ispatlanarak gösterilmiştir. Kotanjant formülünün ispatı ayrıca gösterilmemiştir. Bu formülün ispatı için tanjantın ispatı bulunduktan sonra çarpma işlemine göre tersi alındığında kotanjantın değeri bulunmuş olur. 

cos fonksiyonun toplam ve fark eşitliği bulunduktan sonra trigonometrik fonksiyonların birbirine dönüşümleri kullanılarak sinüs fonksiyonun da toplam ve fark formülü elde edilir. Bu iki formülden yararlanarak da tanjant fonksiyonu ile cotanjant fonksiyonlarının toplam ve fark formülleri bulunur.  Tanjatın toplam formülü bulunurken finüs ve cosinüs fonksiyonlarının toplam fark formülleri yazıldıktan sonra birbirine oranlanır. sin(a+ b) ve cos (a+b) ifadelerinin eşiti yerlerine yazıldıktan sonra pay ve payda cosa.cosb ile bölünür. 


Başka bir ispat biçimi olarak aşağıdaki dik üçgenden, eş uzunluk parçaları kullanılarak toplam fark formülleri elde edilebilir.
Öğrencilerimizin sınavlara hazırlanırken sinüs,cosinüs ve özellikle tanjantın toplam ve fark formüllerini bilmesi yararlı olacaktır. Bu formüllerden sadece tanjantı ezberlemeniz durumunda bile pek çok soruyu çözebilirsiniz. Tanjantın formülünden bulduğunuz toplam veya fark açısından yola çıkarak tanjanta uygun bir üçgen çizerseniz trigonometrik oranlardan biri belli iken diğerinin bulunmasından yola çıkarak sizden istenen trigonometrik fonksiyonun değerini bu üçgen yardımıyla bulabilirsiniz.

Farklı bir yoldan,  bu formüllerin birim çember yardımıyla da ispatı mümkündür. Örnek olarak cosinüs fark formülünü birim çemberden şu şekilde ispatlayabiliriz.


Toplam ve fark formüllerinin ispatları cebirsel olarak gösterilebildiği gibi, geometrik olarak da gösterilebilir.Konu ile ilgili diğer yazımız için; (Bkz. Toplam/Fark Formüllerinin Geometrik İspatı) adresini inceleyebilirsiniz. 

Aşağıda yer alan örnekleri inceleyerek, formüllerin nasıl kullanıldığına dair bilgi sahibi olabilirsiniz.




Sinx ve Cosx Fonksiyonları Türev İspatları

Açının sinüsü ve kosinüsü: Birim çember üzerinde, rastgele bir P noktası belirleyelim. P noktasından orijine çizilerek oluşturulan açıyı gözönüne alalım. P noktasının bu açı sayesinde oluşturduğu apsis değerine açının kosinüsü, P noktasının ordinatına da açının sinüsü denir. Verilen P noktası için; x = cosa , y = sina olduğundan aşağıdaki sonuçlar çıkarılabilir.

1.     P noktası çember üzerinde ve yarıçapı 1 birim olan birim çember üzerinde bir nokta olduğu için; Cosinüs fonksiyonu -1 ile 1 arasında değerler alacaktır. Verilen tüm reel sayı değerleri için cosinüs fonksiyonun alabileceği en küçük değer -1 ve alabileceği en büyük değer ise +1 olacaktır. Birim çember üzerinde bu durum kolaylıkla görülebilir.
            -1 < cosa < 1  veya  cos : R ---> [-1,1]  dir. Yani kosinüs fonksiyonunun tanım kümesi R, görüntü kümesi [-1,1] dir. 
Aynı şekilde ; Sinüs fonksiyonu -1 ile 1 arasında değerler alacaktır. Verilen tüm reel sayı değerleri için sinüs fonksiyonun alabileceği en küçük değer -1 ve alabileceği en büyük değer ise +1 olacaktır. Birim çember üzerinde bu durum cosinüs fonksiyonunda olduğu gibi kolaylıkla görülebilir. 
-1 < sina <veya  sin : R ---> [-1,1]  dir. Yani sinüs fonksiyonunun tanım kümesi R, görüntü kümesi [-1,1] dir.

2.     x = cosa  ve  y = sina  olduğuna göre;    birim çemberde çizilen dik üçgen yardımıyla bir a açısı için pisagor teoremi uygulanırsa; cos2a + sin2a= 1  bulunur.  Bu trigonometrideki temel teoremlerden biridir.
 
Açının tanjantı ve kotanjant değerleri bulunurken; Birim çemberin dışındaki bir A noktasından çizilen teğeti incelersek;  m,  bir reel sayı olmak üzere, T(1,m) noktası teğetin üzerindedir. T noktasının ordinatına oluşan açının tanjantı denir. Tanjsnt değeri aynı zamanda verilen bir doğrunun eğimini verir. Eğim m harfi ile gösterilirse kısaca  m = tana yazılabilir.

Sonuç :T(1,m) noktası teğet üzerindeki herhangi bir nokta için, m herhangi bir nokta olabilir. Dolayısıyla; tanjant fonksiyonunun tanım kümesi pi sayısı 180 derece olarak ifade edilen radyan açı olmak üzere, (pi/2 +kpi) yani 90 derece ve tek katlarında (90, 270, 450... gibi açılar hariç olmak üzere) hariç bütün gerçel sayılar kümesinde tanımlıdır. Tanjant fonksiyonun görüntü kümesi ise R dir. Aynı şekilde cotanjant fonksiyonunun tanım kümesi (pi+kpi) yani 180 derece ve katlarında 180, 360, 540,...vs gibi açılar hariç olmak üzere) hariç bütün gerçel sayılarda tanımlıdır ve görüntü kümesi de R  olarak belirlenir. 

Tanjant ve cotanjant fonksiyonları çarpma işlemine göre birbirlerinin tersi olduğundan yani tanx = 1/cotx olarak yazılabildiği için tanx.cotx=1 olarak önemli bir teorem bulunmuş olur.
Tanjant ve cotanjant fonksiyonları aslında esas fonksiyonlar olmayıp tali fonksiyonlardandır. Yani tan fonksiyonu aslında bir açının sinüs değerinin, cosinüs değerine bölümü ile bulunabilir. tanx=sinx/cosx olarak yazılabilir. Aynı şekilde cotx=cosx/sinx olarak yazılabilir.

Verilen bu ön bilgilere göre trigonometrik fonksiyonların türevi alınırken trigonometrideki (Bkz. Trginometri Dönüşüm formülleri) (Bkz. Trigonometri Toplam ve fark formülleri) ve limit ile verilen türev tanımından yararlanılarak türev hesabı yapılır.

Secant ve Cosecant Fonksiyonları

Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğru çizildiğinde bu doğrunun y eksenini kestiği noktanın ordinat değerine L noktasını ifade eden açının cosec değeri, x eksenin kestiği noktanın apsis değerine de o açının secant değeri denir. Kısaca bu fonksiyonlar şu şekilde ifade edilir. Cosinüs fonksiyonun çarpma işlemine göre tersine secant fonksiyonu denir. (secx=1/cosx)
 
Sinüs fonksiyonun çarpma işlemine göre tersine cosecant fonksiyonu denir. (cosecx=1/sinx)  Bu fonksiyonların tanım kümeleri paydalarında bulunan sinüs ve cosinüs fonksiyonuna göre değişir. Yani secant fonksiyonu paydasında cosinüs olduğundan cosinüsün 0 olduğu, 90 derece ve tek sayı katlarında tanımsız olur. cosecant fonksiyonu da paydasında sinüs olduğundan sinüsün 0 değeri  olduğu 180 derece ve çift katlarında tanımsız olur. 
Secant ve cosecant fonksiyonlarının görüntü kümeleri ise Reel sayılardır. Çok sık kullanılan bazı açıların aşağıda trigonometrik değerleri verilmiştir.

Üçgenin Çevrel Çember-Sinüs Alan Formülü




Bir üçgende çevrel çember (yarıçapı) verildiğinde bu üçgenin kenarları kullanılarak üçgenin alanı bulunabilir. Bir üçgenin alanı bu üçgenin herhangi iki kenarı ile bu kenarların arasında kalan açının sinüs değerinin çarpımının yarısına eşittir. Kenar uzunlukları verilen üçgende çevrel çember yarıçapı ile sinüs teoreminden kenarların arasındaki bağıntıların eşliğinden yola çıkarak yeni bir üçgen alan formülü karşımıza çıkar. 

Çevrel çemberin merkezi üçgenin iç bölgesinde veya dış bölgesinde yer alabilir. Meydana gelen bu üçgenin alanını, çevrel çemberin yarıçapını kullanarak bulabiliriz. Çevrel çember yardımıyla üçgenin alanı hesaplanırken, üçgenin bütün kenar uzunlukları çarpılır ve çarpım sonucu çevrel çemberin yarıçapının dört katına bölünür. Bu şekilde üçgenin alanı bulunmuş olur. (Bkz. Üçgenin Çevrel Çemberi)

Aşağıdaki Yazılar İlginizi Çekebilir!!!