Net Fikir » üçgenin alanı » Üçgenin Çevrel Çember-Sinüs Alan Formülü
Üçgenin Çevrel Çember-Sinüs Alan Formülü
Etiketler :
alan formülleri
çember
geometri
ispat
matematik
sinüs fonksiyonu
teorem ispatları
üçgen
üçgenin alanı
Bir üçgende çevrel çember (yarıçapı) verildiğinde bu üçgenin kenarları kullanılarak üçgenin alanı bulunabilir. Bir üçgenin alanı bu üçgenin herhangi iki kenarı ile bu kenarların arasında kalan açının sinüs değerinin çarpımının yarısına eşittir. Kenar uzunlukları verilen üçgende çevrel çember yarıçapı ile sinüs teoreminden kenarların arasındaki bağıntıların eşliğinden yola çıkarak yeni bir üçgen alan formülü karşımıza çıkar.
Çevrel çemberin merkezi üçgenin iç bölgesinde veya dış bölgesinde yer alabilir. Meydana gelen bu üçgenin alanını, çevrel çemberin yarıçapını kullanarak bulabiliriz. Çevrel çember yardımıyla üçgenin alanı hesaplanırken, üçgenin bütün kenar uzunlukları çarpılır ve çarpım sonucu çevrel çemberin yarıçapının dört katına bölünür. Bu şekilde üçgenin alanı bulunmuş olur. (Bkz. Üçgenin Çevrel Çemberi)
![](https://lh3.googleusercontent.com/-L6sZ7l0x9sU/WGvRonbl2sI/AAAAAAAAHGY/HsxTt1kVzTYD4k82FiQOKzdAbT1kckDUQCLcB/h120/icon18_edit_allbkg.gif)
Takip et: @kpancar |
|
![]() |
![blogger eklentileri-blogger temaları blogger eklentileri-blogger temaları](https://lh6.googleusercontent.com/-W1jc6RrtllI/VNUg4TP7ygI/AAAAAAAAEd8/25BhU0R8LEs/w140-h140-p/unlem.png)
Matematik Konularından Seçmeler
matematik
(214)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanl...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Geçmişten günümüze kadar matematikte emek sarfetmiş bilim insanlarından bazılarını, bir tarih şeridi halinde görmek istersek, aşağıdaki gib...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...