Toplam ve Fark Formülleri Geometrik İspatları

Etiketler :
"Bu geometrik ispat biçimi, Leonard M. Smiley, Alaska Üniversitesi tarafından kosinüs ve sinüs için trigonometrik toplama ve çıkarma formülleri delillerini göstermek için ortaya konmuştur. Toplam ve fark formüllerinin geometrik ispat biçimleri Matematik Dergisi'nin Aralık,1999 sayısında yer almıştır.

Burada yer alan ispat ve deliller sadece "dar" açılar için geçerlidir, ama tamamen sentetik ve minimal diyagram kullanan Öklid geometrisinde yaygın olarak kullanılır. Buradaki deliller kartezyen koordinatları kullanarak standart analitik ispat için ortak olmayacak şekilde genel bir ispat biçimi sunmaya tamamlayıcı niteliktedir." orjinal metin:(http://math.uaa.alaska.edu/~smiley/trigproofs.html)

Aşağıda toplam ve fark formüllerinin geometrik olarak nasıl ispatlanabileceğini gösteren şekiller çizilmiştir. Açıklamalara göre bu toplam ve fark formülleri verilen dar açılar için geçerli olarak geometrik ispatları yapılmış olur.
 
Şekil 1: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada alfa açısının tanjant değerinden cos(a+b) değeri geometrik olarak gösterilmiş olur.

Şekil 2: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada h ile gösterilen kenar uzunluğu yazılırsa, aynı şekilde alttaki dik üçgen üzerinden de  kenarı uzunluğu yazılırsa bu iki uzunluğun birbirleri yerine yazılmasıyla yani x uzunluğunda yer alan h değeri için bulunan ifade yazılıp düzenlenirse; cos(a-b) geometrik olarak gösterilmiş olur.  

Şekil 3: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde, açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılır ve buradaki büyük dik üçgende alfa açısının sin değeri yazılıp içler çarpımı yapılarak gerekli düzenlemeler yapılırsa sin(a+b) değeri geometrik olarak gösterilmiş olur. 
Şekil 4: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde, açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılır ve buradaki altta yer alan küçük dik üçgende beta açısına göre h değeri yazılıp, aynı şekilde diğer dik üçgende de x kenarının h'ye bağlı olarak değeri yazılırsa ve burada bulunan h değeri x kenarında yerine yazıldığında gerekli düzenlmeler yapılırsa sin(a-b) değeri geometrik olarak gösterilmiş olur.

Cebirsel ispatları daha önceki yazılarımızda gösterilmişti. (Bkz. Toplam ve fark formülleri) Sitemizde arama yapılarak kapsamlı izahlara ulaşılabilir.  Kısa bir şekilde formülleri burada tekrarlayacak olursak; 

Bu formüllerin ispatında açıların dönüşümünden yararlanılabilir. Formüllerin ispatı yapılırken birim çember özellikleri iyi bilinmelidir.
* Cosinüs trigonometrik fonksiyonunda iki açının toplam formülü (Cosinüs) aşağıdaki gibi gösterilebilir.

* Sinüs trigonometrik fonksiyonunda iki açının fark formülü (Sinüs) aşağıdaki gibi gösterilebilir.

* Sinüs trigonometrik fonksiyonunda iki açının toplam formülü (Sinüs) aşağıdaki gibi gösterilebilir.

* Cosinüs trigonometrik fonksiyonunda iki açının fark formülü (Cosinüs) ispatı da detaylı olarak birim çember üzerinden (Bkz. Toplam ve fark formülleri) adresindeki gibi gösterilebilir.

cos (x-y) formülü için farklı bir ispat yöntemini de birim çember üzerinden aynı açıyı gören kiriş uzunlukları yardımıyla analitik olarak ispatlayabiliriz. Bu ispatı yaparken bilmemiz gereken iki nokta arası uzaklık kavramı ve çemberde kiriş özellikleri kavramlarıdır. Aşağıda verilen ispatı inceleyiniz.

1 yorum:

  1. Hocam gerçekten güzel bir araştırma olmuş.Ellerinize sağlık...

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Faydasız ve çirkin ilimleri öğrenmek06.05.2019 - 0 Yorumİlim, hiçbir surette salt ilim olması bakımından çirkin (mezmum) olmaz. Fakat üç sebebe binaen bazı kullar hakkında çirkin ve mezmum addedilir. 1. Sahibini veya başkalarını kötüye sevkeden ilimdir. Sihir ve büyü ilmi buna örnek olarak…
  • Çarpma İşlemi (Çin/Japon Metodu)12.08.2016 - 0 Yorum Japon ve Çin dünyasında sıklıkla kullanılan bir başka çarpma yöntemini daha şu şekilde paylaşmak istiyorum. Bu çarpma yönteminde her sayı için bir düz çizgi çizilir. Yalnız basamaklarına göre uygun biçimde aralarında boşluk bırakmadan kaç rakamı…
  • Bir matrisin transpozu25.10.2024 - 0 YorumBir matrisin transpozu (devriği) matrisin satır ve sütunlarının yer değiştirilmesiyle oluşan yeni bir matristir. Bir matrisin transpozunun tekrar transpozu alınırsa tekrar kendisini verir. Doğrusal (lineer) cebirde, bir A matrisinin transpozu Aᵀ…
  • YGS 2016 Matematik Sınavı Çözümleri13.05.2016 - 0 Yorum YGS 2016 sınavı geçmiş yıllara nazaran daha kolay denilebilecek düzeyde olmakla birlikte okuduğunu anlama ve yorumlama yeteneğinin ölçüldüğü bi sınav olarak gözümüze çarpmaktadır.  Sınavda her yıl olduğu gibi aşağıda yer alan temel matematik…
  • Belirli integralde alan hesabı05.07.2024 - 0 YorumBir fonksiyonun grafiğinin eksenlerle arasında kalan alan, belirli integral yardımıyla bulunabilir. Bunun için hangi eksen ile arasında kalan alan soruluyorsa bu değişkene göre fonksiyonun integrali alınır. Uç sınırları bilinen kapalı aralık için…
  • Yahya en-Nakkaş et-Tuleytuli  (Ez-Zerkale)19.04.2013 - 0 Yorumİbn Zerkale (ö. 493-1100) Endülüslü astronom ve matematikçidir. Ebû İshâk İbrâhîm b. Yahya en-Nakkâş et-Tuleytûlî el-Kurtubî. Hayatı hakkında çok az şey bilinmektedir. XI. yüzyılın ilk çeyreğinde muhtemelen Tuleytula'da (Toledo) doğmuştur.…
  • Endülüsten Avrupa'ya Hazin Sesleniş30.03.2016 - 1 Yorum Emevi devleti; tarihin sayfalarında yerini alırken bizlere birçok ibretlik hadiseyi bırakmış olmanın yanında dünya tarihinde de çığır açan izler olarak karşımıza çıkar. Dünya topraklarının pek çoğunu etkilemenin yanında kültürel ve ideolojik…
  • Fonksiyonlarda İşlem konu Özeti05.03.2013 - 0 Yorum FONKSİYONLARDA İŞLEM (Sıralı ikili işlem)  KONUSU ÖZET VE ÖRNEK SORULAR İkili işlemin tanımı, kısa özeti ve işlemin uygulamalarına yönelik örnek sorulardan…