İntegralde basit kesirlere ayırma yöntemi

Rasyonel şekilde verilen bir fonksiyonun integrali alınırken bazen pay kısmında yer alan ifade payda kısmında yer alan ifadeye polinom bölmesi yapılarak integral basit kesirlere ayrılır ve ayrılan basit kesirler ayrı ayrı hesaplanarak integral alma işlemi tamamlanır.

| | Devamı... 0 yorum

Kısmi integrasyon metodu

Genellikle iki farklı fonksiyonun çarpımı şeklinde verilen fonksiyonların integralinde değişken değiştirme yöntemi işe yaramayacağından burada "kısmi integrasyon yöntemi" kullanılır. 

Logaritma (L), Terstrigonometrik fonksiyonlar (Arc), Polinom fonksiyon (P), Trigonometrik fonksiyon (T) ve üstel fonksiyon (Ü) sırasıyla hangisi önce geliyorsa (LAPTÜ) o fonksiyona u değişkeni verilip diferansiyeli alındıktan sonra kısmi integrasyon formülü kullanılarak integral alma işlemi yapılır.


 

| | Devamı... 0 yorum

Logaritma ve üstel fonkiyonun integrali


Üstel ve logaritma biçiminde verilen fonksiyonların integrali hesaplanırken, üstel ve logaritma fonksiyon özelliklerinden yararlanılır. Türevden yararlanarak üstel fonksiyon ve logaritmanın integral kuralları oluşturulabilir. (Bkz: Logaritma Türevi)

 

Bazı durumlarda integral alma işleminde değişken değiştirme yöntemi kullanılır. Değişken değiştirme yönteminde hangi parçaya u deneceği ve bunun diferansiyelinin alınması son derece önemlidir.  Değişken değiştirme yöntemi ile integral alma kurallarında verilen integral formuna dönüştürülen logaritma fonksiyonun integrali, aşağıdaki formüller yardımıyla kolaylıkla hesaplanabilir.

 

 

lnx gibi bazı fonksiyonların integrali alınırken kısmi integrasyon metodundan yararlanılır. (Bkz: Kısmi İntegrasyon Metodu)
| | | Devamı... 0 yorum

Ters trigonometrik fonksiyonların integrali

Ters trigonometrik fonksiyon biçiminde verilen fonksiyonlarda dik üçgen çiziminden yararlanarak dönüşüm yapılabilir. Bu şekilde elde edilen belirsiz integral, integral alma kuralları yardımıyla hesaplanır.

İntegrali alınacak fonksiyonun paydasındaki ifadenin ters trigonometrik fonksiyonların integralindeki forma dönüşebilmesi için paydaya uygun sayılar eklenir ya da çıkarılır bunun sonucunda elde edilen integral istenen biçime dönüştürülür daha sonra integral değeri hesaplanır. 

Trigonometrik fonksiyonların integrali

Trigonometrik fonksiyonların integrali hesaplanırken öncelikle verilen integral değişken değiştirme ve trigonometrik özdeşlikler yardımıyla uygun bir forma dönüştürülür daha sonra integral alma kuralları kullanılarak integral değeri hesaplanır.

Bazı trigonometrik integralde sadece değişken değiştirme işlemi sorunun çözümü için yetmeyebilir. Bu durumda integrali alınacak fonksiyon; trigonometrik özdeşlikler, yarım açı formülleri, toplam ve fark formülleri, dönüşüm ve ters dönüşüm formülleri kullanılarak daha basit bir forma dönüştürülür sonra integral alma işlemi yapılır. Aşağıdaki örnekte verilen fonksiyonun integrali alınırken sinü fonksiyonun yarım açı formülü kullanılarak integral daha basit bir forma dönüştürülmüş daha sonra değişken değiştirme işlemi ile integral hesabı yapılmıştır.
Sinüs veya cosinüs fonksiyonların çift kuvvetleri biçiminde verilen integrallerde derece trigonometrik özdeşlikler yardımıyla düşürülerek integral basit forma indirgenir. Örneğin sin²x ve cos²x fonksiyonlarının integrali hesaplanırken, yarım açı formüllerinden yararlanarak fonksiyonun derecesi düşürülür. Sonra bilinen integral alma kuralları kullanılarak integral değeri hesaplanır.
 
Sinüs veya cosinüs fonksiyonların tek kuvvetleri biçiminde verilen integraller, önce çift dereceli ve tek dereceli olacak biçimde iki çarpan halinde yazılır. Örneğin sin³x fonksiyonu sin²x ve sinx fonksiyonlarının çarpımı biçiminde olduğundan sin³x=sin²x.sinx şeklinde yazılır.  Daha sonra trigonometrik özdeşlik kullanılarak sin²x=1-cos²x yardımıyla integral basit bir forma dönüştürülür. Benzer şekilde cos³x fonksiyonu cos²x ve cosx fonksiyonlarının çarpımı biçiminde olduğundan cos³x=cos²x.cosx şeklinde yazılır.  Daha sonra trigonometrik özdeşlik kullanılarak cos²x=1-sin²x yardımıyla integral basit bir forma dönüştürülür.
 

Bazı trigonometrik fonksiyonların integralinde ters dönüşüm formüllerinden yararlanmak gerekebilir. Bu durumdafonksiyon öncelikle ters dönüşüm formülü kullanılarak uygun forma dönüştürülür daha sonra integral değeri hesaplanır.


| | | Devamı... 0 yorum

İntegralde değişken değiştirme yöntemi

 Bazı integrallerde verilen fonksiyonun mevcut değişkenine göre integralini hesaplamak daha zor olabilir. Bu durumda uygun bir değişken değiştirme işlemi yapılarak integral daha basit bir forma dönüştürülür daha sonra integral alma kuralları kullanılarak integral değeri hesaplanır. 



Belirsiz integral alma kuralları

"Türevi alınmış bu fonksiyonun türevi alınmadan önceki hali nedir?" Bu sorunun cevabını bulmak için yapılan tüm işlemlere integral alma işlemi denir. İntegral alma işlemi kısaca sembolü ile gösterilir. Bir fonksiyonun integrali bağlı olduğu değişkene göre (x değişkenine bağlı olarak f fonksiyonun integrali) ∫ f(x).dx  şeklinde yazılır. Burada integral alma işleminde alt ve üst sınırlar gösterilmezse buna "belirsiz integral" adı verilir. Bazı belirsiz integral alma kuralları aşağıda verilmiştir. Bu kurallara bağlı olarak aşağıda örnekler sunulmuştur.

 

(NOT: 2018 yılından önceki matematik müfredatlarında aşağıda verilen tüm belirsiz integral alma kuralları yer alırken 2018-2024 Lise matematik öğretim programında sadece "polinom fonksiyonların integrali" müfredata alınmış daha sonra 2024 yılında yenilen matematik müfredatında integral ünitesi tamamen matematik konularından çıkarılmıştır.)

Köklü biçimde verilen fonksiyonlar öncelikle üslü biçimde yazılır daha sonra polinom fonksiyonların integrali gibi integral alma işlemi yapılır. Derecenin ve fonksiyonun ayrı ayrı bileşke şeklinde integrali alınır.

İntegral işleminde, pay veya paydada çarpanlara ayrıabilen bir ifade varsa öncelikle çarpanlarına ayırma işlemi yapılarak integral alma işlemi denenir. Çarpanlarına ayırma işleminde, basit kesirlerine ayırma yöntemi veya özdeşliklerden yararlanılır. Çarpanlara ayırma işlemi ile hesaplanamayan integrallerde değişken değiştirme veya kısmi integrasyon metodları kullanılır.


| | | Devamı... 0 yorum

Belirsiz İntegral

Türevi verilmiş bir fonksiyonun kendisini bulurken yapılan işleme “ters türev alma” ya da daha genel anlamı ile “integral alma” işlemi denir. 
Türev alma işleminde yapılan bir işlemin tersini bulmak için şöyle bir soru sorulabilir: "Türevi alınmış bu fonksiyonun türevi alınmadan önceki hali nedir?" Bu sorunun cevabını bulmak için yapılan tüm işlemlere integral alma işlemi denir. 
İntegral alma işlemi kısaca sembolü ile gösterilir. Bir fonksiyonun integrali bağlı olduğu değişkene göre:
(x değişkenine bağlı olarak f fonksiyonun integrali) ∫ f(x).dx  şeklinde yazılır. 
Burada integral alma işleminde alt ve üst sınırlar gösterilmezse buna "belirsiz integral" adı verilir.


Örnek olarak açıklamak gerekirse : “x e göre türevi 2x olan fonksiyon nedir?” sorusunun cevabı x², x² + 1 , x² + 5, x² + 13, x²- 2, x²- 11, x²- 29 ....... şeklinde bir cevap ise doğrudur ve bulduğumuz bu fonksiyonlar başta verilen f(x)=2x fonksiyonun ters türevidir. Bulunan fonksiyonların genel şekline bakılırsa, x² ve bir sabit sayı şeklinde olduğu görülür. Sabit sayının türevi sıfır olduğundan x² yanına hangi sabit sayı yazılırsa yazılsın sonuç farketmez. Burada sabit sayıyı c olarak ifade edersek cevabımız: “x² + c” olur ki bu işlem “2x” fonksiyonunun “belirsiz integrali” (integrant) olarak adlandırılır. Buradaki c sayısı integral sabiti (constant) olup bir reel sayıdır. 
Belirsiz alma işlemlerinde kesinlikle c sabiti unutulmamalıdır.

 

Diferansiyel kavramı

Türevlenebilir bir fonksiyonun belli bir aralıkta x değişkeninde meydana gelen sıfıra yakın değişim miktarı dx olmak üzere buna bağlı olarak y değişkeninde meydana gelen değişim miktarıdy ile gösterilirse; fonksiyonun değişim hızı dy/dx olarak ifade edilir.  
Fonksiyonun türevi f'(x)=dy/dx olarak gösterilirse; bu fonksiyonun x değişkenine göre türevi alınırsa dy/dx=f'(x) şeklinde ifade edilir. Türevi alınan fonksiyonda içler dışlar çarpımı yapılırsa: dy=f'(x).dx elde edilir. Bu ifade f(x) fonksiyonun x değişkenine bağlı olarak yazılan diferansiyelidir. Yani bir fonksiyonun diferansiyeli; fonksiyonun türevi ile hangi değişkene göre türev alındığının (dx) çarpımı olarak yazılır. 
Otomotivde de kullanılan diferansiyel kavramı, hareket ile ilgili önemli bir terimdir. Buradaki diferansiyel kavramı bir akstaki iki teker arasındaki devir dengesini sağlar. Özellikle virajlara sol ve sağ tekerler farklılık gösterdiği için gereklidir. Arka köprüde bulunan bir düzendir, arka tekerleklerin farklı dönmesini ve tork artışını sağlar.  Diferansiyel, motorlu taşıtlarda kullanılan bir aktarma organıdır. Diferansiyel, motor gücünü tekerleklere iletir. Aynı zamanda tekerleklerin farklı hızlarda dönmesi sağlar. 
Matematikçiler için diferansiyel kavramı türevle ilişkili bir kavramdır. Bir fonksiyonun hangi değişkene göre türevi alınacağını bildiren bir kavramdır, türevden farklıdır. Türev fonksiyonun direkt bir noktadaki eğimini verirken, diferansiyel kavramı böyle bir şey söylemez. df(x) fonksiyonun diferansiyelini gösterirken, df(x)/dx veya dy/dx veya f'(x) ifadesi de fonksiyonun türevini gösterir. Matematikte diferansiyel kavramı; "sonsuz küçük farklar" ve "fonksiyonların anlık değişim hızları" gibi sıkı bir temele oturtulmuş çeşitli kavramları içine alan sezgiselbir tanımdır. Diferansiyel terimi; matematik, diferansiyel geometri, cebirsel geometri ve cebirsel topoloji gibi matematiğin çeşitli dallarında, fizik, kimya, jeoloji gibi pek çok alanda kullanılır. 
Diferansiyel terimi, matematikte değişen miktarlardaki sonsuz küçük ("ihmal edilecek kadar sonsuz küçük") değişimi ifade etmek için sıklıkla kullanılır. Örneğin, eğer x bir değişkense, x'in değerindeki bir değişiklik genellikle Δx (delta x) ile gösterilir. Diferansiyel dx, x değişkenindeki sonsuz küçük bir değişikliği temsil eder. Sonsuz derecede küçük veya fonksiyonun sonsuz derecede yavaş bir değişimi fikri sezgisel olarak matematikte son derece faydalı olmuştur.
Tarihte bilinen kaynaklara göre diferansiyeli kavramı kısmen Arşimet tarafından sonsuz küçükleri içeren argümanların kesin olduğuna inanmamasına rağmen çalışmalarında kullanılmıştır. Ayrıca Isaac Newton diferansiyeli çalışmalarında kullanmış ve buna "akış" adını vermiştir.  Bununla birlikte "sonsuz küçük miktarlar" için diferansiyel terimini bugünkü anlamda kullanan ve gösterimini literatürde ortaya koyan Gottfried Leibniz'dir. Leibniz'in gösteriminde, eğer x değişken ise, o zaman dx, x değişkenindeki sonsuz küçük bir değişikliği veya farkı belirtir. Dolayısıyla, eğer y, x'in bir fonksiyonu ise, o zaman y'nin x'e göre türevi genellikle dy/dx ile gösterilir. Newton veya Lagrange diferansiyeli çalışmalarında (ẏ veya y') olarak göstermiştir. Diferansiyellerin bu biçimde kullanılması, örneğin Berkeley'in ünlü "The Analyst" çalışmasında olduğu gibi diferansiyel gösteriminin uygun olmayacağı konusunda çok fazla eleştiri almasına rağmen dy/dx gösterimi popülerliğini koruyarak, "sonsuz küçükler" hesabından yararlanarak, türev kavramı ortaya atılmıştır. y=f(x)'in x değişkenine göre türevinin, Δy/Δx oranı sonsuz için limiti alınarak elde edilebilecek anlık değişim oranı veya hızı grafiğin teğet çizgisinin eğimi olduğu fikrini yani türev kavramını belirlemiştir.
 
Fonksiyonun hangi değişkene göre diferansiyeli alınacaksa o değişken çarpım halinde yanına yazılmalıdır. Aşağıdaki örnekte u fonfsiyonun diferansiyeli du: fonksiyon t değişkenine bağlı olarak yazıldığı için du diferansiyeli alındıktan sonra dt çarpım halinde yanına yazılır.

 
 

Aşağıdaki Yazılar İlginizi Çekebilir!!!