Trigonometrik FonksiyonlarSinüs ve Kosinüs FonksiyonlarıTanjant ve Kotanjant FonksiyonlarıSekant ve Kosekant Fonksiyonları
Net Fikir » trigonometri tarihi » Trigonometri Tarihi
Trigonometri Tarihi
Etiketler :
matematik
matematik tarihi
trigonometri
trigonometri tarihi
Trigonometri: Matematiğin doğrudan doğruya astronomiden çıkmış bir koludur; bir üçgen kenarlarının veya açılarının ölçülerini bunlar içinden bazılarına dayanarak hesaplamaya imkan sağlar.
Babilliler ve Mısırlılar; gökbilim gözlemlerine ve piramitlerin yapımına ilişkin trigonometri elemanlarına sahiptiler. Yunanlılar Menelaus'un küresel geometrisine dayanarak gemicilikte gece saatinin belirlenmesi gibi pratikte kullanılmak üzere nicel bir gökbilim hazırladılar. İskenderiyeli Hiparkhos ve Ptolemaios bir çember yayıyla bunu gören kirişlerin uzunlukları arasındaki bağıntıları sistemli bir biçimde incelediler. Çemberin daha yeni olan 360 dereceye bölünmesine dayalı olarak çeşitli bağıntılar elde ettiler. Çember üzerinde çizilen bölümlere karşılık gelen kirişler, teğetler ve açılar yardımıyla çeşitli teoremlere ulaştılar. Çağdaş dilde sinA ve sinB ye dayanarak sin(A-B) gibi toplam ve fark formüllerini hesaplamaya imkan veren Ptolemaios teoremi yardımıyla (3/4) derecelik bir aralık için, trigonometrik cetvelleri oluşturuldu.
Hint trigonometrisi yarım yaya, bunu gören yarı kirişi eşlik ettirerek bu günki sinüs kavramına dahaçok yaklaşıyor. Aryabhata (öl. ms. 550?) Ptolemaios un geometrik argümanları yerine cebirsel argümanlar koyuyor, ama çemberin dakikalara bölünmesinden ve pi sayısının 3,1415.. yaklaşık değerinden gelen 3438 birimlik bir yarıçap getiriyor. Sabit bin Kurra ve el-Batlani tarafindan aktarilan Arap geometrisi Hintlilerin trigonometri anlayışına benzerdir. Arap ve hint matematikçilerinin çalışmalarıyla büyük ölçüde trigonometrik fonksiyonlardan tanjant, kotanjant, sekant ve kosecant fonksiyonları trigonometri ilminin kullanımına sunulmuştur.
Nasirettin Tusi yazdığı "Tam Dörtgeni inceleme" kitabında ki bu kitaptan ve trigonometri çalışmalarından Avrupalıların Regiomontanus'a gelinceye kadar haberleri olmamıştır- çember ve dörtgenler üzerinden trigonometrik kavramlar üzerinde yoğun çalışmaların sonuçlarını sistemleştirmiştir. Regiomontanus'tan J. Wernere kadar Alman matematikçileri, trigonometri cetvellerin duyarlılığını artırıp kesirlerden ve ondalıklardan kaçınmak amacıyla, yarıçap olarak 10 üssü 15'e kadar gittikçe büyüyen bir sayıyı birim olarak kullandılar. Rheticus, F. Viéte in düzlem küre için incelenmesini sistemleştireceği sinüse, bu günkü anlamını verip formülleri sadeleştirmiştir. Eulerin yaptığı bir birim yarıçapın seçimi ve fonksiyon kavramının gelişimi, trigonometrinin, karmaşık üslerin incelenmesiyle azar azar bütünleşmesinde önemli bir rol oynamıştır.
Takip et: @kpancar |
|
''Trigonometri Tarihi'' Bu Blog yazısı;
Mayıs 06, 2009 tarihinde matematik, matematik tarihi, trigonometri, trigonometri tarihi kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamı...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkara...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...