Trigonometrik FonksiyonlarSinüs ve Kosinüs FonksiyonlarıTanjant ve Kotanjant FonksiyonlarıSekant ve Kosekant Fonksiyonları
Net Fikir » trigonometri tarihi » Trigonometri Tarihi
Trigonometri Tarihi
Etiketler :
matematik
matematik tarihi
trigonometri
trigonometri tarihi
Trigonometri: Matematiğin doğrudan doğruya astronomiden çıkmış bir koludur; bir üçgen kenarlarının veya açılarının ölçülerini bunlar içinden bazılarına dayanarak hesaplamaya imkan sağlar.
Babilliler ve Mısırlılar; gökbilim gözlemlerine ve piramitlerin yapımına ilişkin trigonometri elemanlarına sahiptiler. Yunanlılar Menelaus'un küresel geometrisine dayanarak gemicilikte gece saatinin belirlenmesi gibi pratikte kullanılmak üzere nicel bir gökbilim hazırladılar. İskenderiyeli Hiparkhos ve Ptolemaios bir çember yayıyla bunu gören kirişlerin uzunlukları arasındaki bağıntıları sistemli bir biçimde incelediler. Çemberin daha yeni olan 360 dereceye bölünmesine dayalı olarak çeşitli bağıntılar elde ettiler. Çember üzerinde çizilen bölümlere karşılık gelen kirişler, teğetler ve açılar yardımıyla çeşitli teoremlere ulaştılar. Çağdaş dilde sinA ve sinB ye dayanarak sin(A-B) gibi toplam ve fark formüllerini hesaplamaya imkan veren Ptolemaios teoremi yardımıyla (3/4) derecelik bir aralık için, trigonometrik cetvelleri oluşturuldu.
Hint trigonometrisi yarım yaya, bunu gören yarı kirişi eşlik ettirerek bu günki sinüs kavramına dahaçok yaklaşıyor. Aryabhata (öl. ms. 550?) Ptolemaios un geometrik argümanları yerine cebirsel argümanlar koyuyor, ama çemberin dakikalara bölünmesinden ve pi sayısının 3,1415.. yaklaşık değerinden gelen 3438 birimlik bir yarıçap getiriyor. Sabit bin Kurra ve el-Batlani tarafindan aktarilan Arap geometrisi Hintlilerin trigonometri anlayışına benzerdir. Arap ve hint matematikçilerinin çalışmalarıyla büyük ölçüde trigonometrik fonksiyonlardan tanjant, kotanjant, sekant ve kosecant fonksiyonları trigonometri ilminin kullanımına sunulmuştur.
Nasirettin Tusi yazdığı "Tam Dörtgeni inceleme" kitabında ki bu kitaptan ve trigonometri çalışmalarından Avrupalıların Regiomontanus'a gelinceye kadar haberleri olmamıştır- çember ve dörtgenler üzerinden trigonometrik kavramlar üzerinde yoğun çalışmaların sonuçlarını sistemleştirmiştir. Regiomontanus'tan J. Wernere kadar Alman matematikçileri, trigonometri cetvellerin duyarlılığını artırıp kesirlerden ve ondalıklardan kaçınmak amacıyla, yarıçap olarak 10 üssü 15'e kadar gittikçe büyüyen bir sayıyı birim olarak kullandılar. Rheticus, F. Viéte in düzlem küre için incelenmesini sistemleştireceği sinüse, bu günkü anlamını verip formülleri sadeleştirmiştir. Eulerin yaptığı bir birim yarıçapın seçimi ve fonksiyon kavramının gelişimi, trigonometrinin, karmaşık üslerin incelenmesiyle azar azar bütünleşmesinde önemli bir rol oynamıştır.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

Aşağıdaki Yazılar İlginizi Çekebilir!!!
19.01.2012 - 0 Yorum Bir düzlem içindeki dairenin her noktasını, düzlem dışındaki bir noktaya birleştiren doğru parçalarının meydana getirdiği geometrik şekle koni adı verilir. Yüksekliği tabanın ağırlık merkezinden geçen koniye dik dairesel koni denir. Dik üçgenin…
15.04.2014 - 0 YorumANKARA ÜNİVERSİTESİ 2013-2014 EĞİTİM-ÖĞRETİM YILI BAHAR YARIYILI ARA SINAVI İLAHİYAT LİSANS TAMAMLAMA UZAKTAN EĞİTİM PROGRAMI (YARIYILLIK) 12-13 NİSAN 2014 CUMARTESİ ÖĞLEDEN SONRA - PAZAR ÖĞLEDEN SONRA OTURUMLARI DERSLER: TEFSİR METİNLERİ2, HADİS…
04.07.2022 - 0 YorumTemel Matematik testi Ortaöğretim kurumlarının son sınıfında okuyan öğrencilerin TYT Matematik Net ortalaması: 8,170 nettir. Bu ortalamaya liseden mezun olmuş olan adaylar da dahil edildiğinde, tüm adayların TYT Matematik Net ortalaması: 6,938 net…
01.06.2010 - 0 Yorum Keffaretin Mahiyeti ve Nevileri 167- Keffaret, lûgat deyiminde gidermek ve örtmek manasındadır. Allah, bazı kusurları ve günahları birtakım vesilelerle bağışlayıp örttüğünden bu vesilelerden her birine "Keffaret" denilmiştir.…
29.05.2013 - 3 YorumAnkara İlitam 1.sınıf 2.Dönem Ders Kitapları Burada yer alan ders kitapları, 2013-2014 Eğitim-Öğretim Yılı içindir. Burada yer alan bazı ders kitaplarının ünite ve konu başlıkları, iligili ders döneminden sonra değişmiş veya yeni bilgiler ilave…
15.01.2014 - 0 Yorumİlahiyat lisans Tamamlama 2. Sınıf Ders Özetleri ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. öğrencilerimize faydalı olması amacıyla burada…
08.05.2021 - 0 YorumO merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Bazı…
19.04.2013 - 0 YorumHasan el-Kerhî (ö.y.1020). Arap metematik okulunda cebirsel hesap kuramının ilk temsilcisi olan matematik bilginidir. Yaşamı hakkında hemen hiç bilgi yoktur. Matematik üzerine iki eseri bugüne kadar geldi. El-kâfi fiil-hisab (Hesapta yeterlilik),…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...