L-Hospital Kuralı

L'Hospital 1661 'de Paris'te doğmuştur. Asil ve zengin üst tabaka bir Fransız ailesinden gelir. Asil bir aileden gelmesi nedeniyle bir süvari alayında yüzbaşı rütbesi ile görev yaptı. Ancak gözlerinin ileri derecede bozuk olması ve matematiğe olan yoğun ilgisi ve yeteneği sonucu askerliği bırakarak tamamen matematiğe yöneldi. Bernoulli 'nin öğretmenliğinde yetişmiştir. Johann Bernoulli fakir ve üretken...
| | Devamı... 2 yorum

Limitte ∞-∞ belirsizliği

∞-∞ belirsizliği limit çözümleri yapılırken ∞/∞ belirsizliği (Bkz.Limitte ∞/∞ belirsizliği)  veya 0/0 belirsizliklerine (Bkz.Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde, limit hesabında payda eşitlemesi yoluyla çözüme ulaşılır. Köklü ifadelerde ise verilen limit hesabı yapılırken köklü ifadenin eşleniğiyle çarpımı yoluyla çözüme...
| | Devamı... 3 yorum

Limitte ∞/∞ Belirsizliği

Limitte polinom fonksiyon olarak verilen ifadelerde x değişkeni için bulunan ∞/∞ belirsizliklerinin çözümünde temel mantık olarak en büyük dereceli terime göre paranteze alma işlemi yapılır.Daha sonra genişletilmiş reel sayılardaki limit (Bkz. Genişletilmiş reel sayılarda limit) kurallarına göre hareket edilerek sonuca ulaşılır.  Kesirli biçimde verilen fonksiyonlarda limit alınırken...
| | | Devamı... 4 yorum

Limitte 0/0 Belirsizliği

0/0 Belirsizliklerinde verilen fonksiyonlar çarpanlara ayırma işlemlerinden yararlanılarak sadeleştirilmeye çalışılır. Daha sonra x değişkeni için verilen sayı değerine göre limit sonucu hesaplanır. Trigonometrik fonksiyonların oluşturduğu bu tip 0/0 belirsizliklerinde ise sinx/x limite bakmak daha yararlı olacaktır. Bu sinx/x ve tanx/x limitlerinin hesaplanış yöntemine (Bkz. sinx/x limiti) göre...
| | | Devamı... 0 yorum

Trigonometrik Fonksiyonların Limitleri

Trigonometrik fonksiyonların limitleri bulunurken verilen radyan cinsinden açıya göre trigonometrik fonksiyonun alacağı değer bilinmelidir. Ayrıca trigonometrik fonksiyonların özellikleri toplam-fark formülleri, dönüşüm formülleri, yarım açı formülleri bilinirse limit alma işlemlerinde kolaylık sağlanır. Verilen açı değeri fonksiyonda yerine yazılarak limit değeri bulunur. Konu ile alakalı olarak...

Genişletilmiş Reel sayılar kümesinde limit

Genişletilmiş Reel sayılar kümesinde limit işlemleri yapılırken önce Genişletilmiş Reel Sayılar kümesinin özelliklerinin bilinmesi gerekir. Aşağıdaki örnekleri incelediğinizde bu küme üzerinde limit işlemleri yapmak daha kolay hale gelecektir. Kesirli biçimde verilen polinom fonksiyonların limit incelemesi yapılırken paydayı sıfır yapan kritik noktalara dikkat edilmelidir. Bu kritik noktada limit...
| | | Devamı... 0 yorum

Elipsin alanı ve ispatı

Elips, sabit bir noktaya ve verilen bir doğruya uzaklıkları oranı birden küçük bir sayıya eşit olan noktalarının geometrik yeridir. Elipsin alanı integral yardımıyla alan hesabı uygulamalarından yararlanarak bulunabilir. Bunun için elipsin denkleminden yola çıkarak eksenler arasında kalan bölgelerin sınırlandığı bölgelerin uç noktalarını bularak integralle alan ispatı yapılabilir. Elipsin çevre formülünün...

Elipsin çevresi ve ispatı

Bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.Elips, bir düzlemde verilen iki noktaya odak noktası (F1, F2) uzaklıkları toplamı sâbit olan noktaların geometrik yeridir; verilen bu iki noktaya F1 ve F2 noktaları elipsin odakları denir. Odaklarının arasındaki uzunluğa 2c dersek ortadaki nokta elipsin merkez noktasıdır. Elipsin x ekseni üzerinde...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Yemin Çeşitleri ve Hükümleri05.06.2010 - 0 Yorum Yeminin Mahiyeti ve Yemin Sayılıp Sayılmayan Şeyler     187- Yemin, lûgatta kuvvet manasınadır. Din deyiminde, bir işi yapmak veya yapmamak için verilen karara kuvvet kazandırılsın diye Yüce Allah'a and vermektir. Yahut boşamak ve…
  • L-Hospital Kuralı27.08.2016 - 2 Yorum L'Hospital 1661 'de Paris'te doğmuştur. Asil ve zengin üst tabaka bir Fransız ailesinden gelir. Asil bir aileden gelmesi nedeniyle bir süvari alayında yüzbaşı rütbesi ile görev yaptı. Ancak gözlerinin ileri derecede bozuk olması ve matematiğe olan…
  • İlim öğrenmenin fazileti04.05.2019 - 0 Yorumİlim, insan için en önemli meseledir. İlim yardımıyla dünya ve ahiretini mamur edebilir. Peygamber Efendimiz (s.a.v) "İlim öğrenmek kadın erkek her müslümana farzdır." (ibn Mace) buyurmuştur. İilim insana fayda veya zarar verebilir. Öğrendiği ilimle…
  • Namazın Sünnetleri10.06.2009 - 0 YorumNamazların Sünnetleri     142- Namazların sünnetleri de vardır. Bu sünnetler, namazların vaciblerini tamamlar. Onlardaki noksanlıkları giderir ve fazla sevab kazanmaya sebeb olur. Sünnetlere riayet edip devam etmek Allah'ın…
  • Yahya en-Nakkaş et-Tuleytuli  (Ez-Zerkale)19.04.2013 - 0 Yorumİbn Zerkale (ö. 493-1100) Endülüslü astronom ve matematikçidir. Ebû İshâk İbrâhîm b. Yahya en-Nakkâş et-Tuleytûlî el-Kurtubî. Hayatı hakkında çok az şey bilinmektedir. XI. yüzyılın ilk çeyreğinde muhtemelen Tuleytula'da (Toledo) doğmuştur.…
  • Genişletilmiş Reel sayılar kümesinde limit26.08.2016 - 0 Yorum Genişletilmiş Reel sayılar kümesinde limit işlemleri yapılırken önce Genişletilmiş Reel Sayılar kümesinin özelliklerinin bilinmesi gerekir. Aşağıdaki örnekleri incelediğinizde bu küme üzerinde limit işlemleri yapmak daha kolay hale…
  • Anne-Baba olma içgüdüsü08.09.2008 - 0 Yorumİnsanların fıtratında var alan ebeveyn olma içgüdüsü, tarifi imkânsız bir duygudur. Her insan, içindeki bu duyguyu yaşatmak için, elinden ne geliyorsa yapmak ve bu emeline ulaşmak için doğal olarak çaba gösterir. Kimileri doğal yollardan çocuk…
  • Göz Yanılması20.06.2014 - 0 YorumMatematiksel olarak ispatlayabileceğimiz bir göz yanılmasını burada paylaşmak istiyorum. Dikkatlice incelendiğinde bile gözle anlaşılamayacak kadar zekice bir gösteriyi sizinle paylaşıyorum. Bir kalıp çikolatanın şekilde videoda gösterildiği gibi…