Net Fikir » teorem ispatları » Elipsin alanı ve ispatı
Elipsin alanı ve ispatı
Etiketler :
alan formülleri
analitik geometri
elips
integral
ispat
konikler
matematik
teorem ispatları
Elips, sabit bir noktaya ve verilen bir doğruya uzaklıkları oranı birden küçük bir sayıya eşit olan noktalarının geometrik yeridir. Elipsin alanı integral yardımıyla alan hesabı uygulamalarından yararlanarak bulunabilir. Bunun için elipsin denkleminden yola çıkarak eksenler arasında kalan bölgelerin sınırlandığı bölgelerin uç noktalarını bularak integralle alan ispatı yapılabilir. Elipsin çevre formülünün ispatında olduğu gibi alan ispatında da integral bilgisi gerekmektedir.
Eksen uzunlukları asal eksen 2a ve yedek eksen 2b olan elipsin Alanı (elips) = π.a.b olduğunu elips denkleminden yola çıkarak ispatlayalım.
Takip et: @kpancar |
|
''Elipsin alanı ve ispatı'' Bu Blog yazısı;
Ağustos 23, 2016 tarihinde alan formülleri, analitik geometri, elips, integral, ispat, konikler, matematik, teorem ispatları kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca 1 yorumlu bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali&quo...
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
-
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu f...
Hocam gercekten tesekkurler cok anlasilir ve guzel ispat.
YanıtlaSil