Net Fikir » matematik » Kirişler Dörtgeni
Kirişler Dörtgeni
Etiketler :
çember
dörtgenler
geometri
kiriş
kirişler dörtgeni
matematik
Bir çember üzerinde yer alan iki farklı noktayı birleştiren doğru parçasına "kiriş" adı verilir. Çember üzerinde alınan dört farklı noktanın kirişler yardımıyla birleştirilmesiyle bir dörtgen meydana gelir. Köşe noktaları bir çember üzerinde buluna bu dörtgene "kirişler dörtgeni" denir.
Çemberin tüm ölçüsü derece cinsinden 360 derece olduğundan doğal olarak bir kirişler dörtgeninde, karşılıklı açıların ölçüleri toplamı 180° dir.
TEOREM: Bir kirişler dörtgeninde, karşılıklı açıların ölçüleri toplamı 180° dir.
İSPAT: Şekilde BCDE dörtgeni, çember üzerinde dört farklı noktanın kirişlerle birleştirilmesiyle oluştuğu için bir kirişler dörtgenidir. Bu dörtgende karşılıklı açılar olan B ve D açılarının ölçülerini inceleyelim.
B açısının ölçüsüne x diyelim. Buna göre B açısının gördüğü yay olan CDE yayının ölçüsü; çevre açı özelliklerinden dolayı 2x ölçüsündedir. Aynı şekilde D açısının ölçüsüne y dersek, D açısının gördüğü yay olan CBE yayının ölçüsü; çevre açı özelliklerinden dolayı 2y ölçüsündedir.
Çemberin tüm ölçüsü 360 derece olduğundan 2x+2y=360 ve buradan da x+y=180 derece olur. Yani B ve D açılarının ölçüleri toplamı 180 derece olur. Aynı şekilde C ve E açılarının da ölçüleri toplamı karşılıklı açılar olduğu için 180 derece olur.
TEOREM: Kirişler dörtgeninde kenar orta dikmeler çemberin merkezinde kesişir. Kirişler dörtgenin bütün kenar orta dikmeleri çizildiğinde bunların kesişimi çemberin merkezini verir. Bu analitik düzlemde iki noktası verilen doğrunun eğimi ile diğer doğrunun eğimleri çarpımının -1'e eşit olmasından yararlanarak ispatlanabilir. Veya geometride eşlik ve benzerlik teoremleri yardımıyla da ispat gösterilebilir. Kirişler dörtgenin köşelerine doğru çizilen ikizkenar üçgenlerdeki yükseklik bağıntısından yararlanarak da ispatı gösterilir.
Karşılıklı açıları bütünler olan (biribirini 180 dereceye tamamlayan) dörtgenlerin, köşelerinden bir çember çizilebilir. Dikdörtgen, kare ve ikizkenar yamuk, karşılıklı açıları bütünler olduğu için kirişler dörtgenidir. Bu dörtgenlerin köşelerinden bir çember çizilebilir.
KİRİŞLER DÖRTGENİN ALANI:
Kirişler dörtgeninde, alan hesaplamak için genellikle dörtgen iki üçgene ayrılarak, sinüs alan formülü kullanılır. Kirişler dörtgeninde herhangi bir köşegen çizilerek, dörtgen iki üçgene ayrılır. Sonra her iki üçgende de kirişlerin çarpımı (üçgenin kenarları) ve bu kenarların arasındaki açının sinüs değeriyle çarpılıp sonuç 2'ye bölünür. Bu bulunan sadece bir üçgenin alanıdır. Aynı işlem diğer parçadaki üçgen için de yapılır. Bu iki parça üçgenin alanları toplamı kirişler dörtgenin alanını verir.
Ancak kenarların arasındaki açıyı bilmiyorsak bu sinüs alan formülü kullanılmaz. Burada üçgendeki HERON alan formülü dörtgenler üzerinde genişletilerek alan hesaplamasında kullanılır. Dört kirişin uzunluğu bilinen bir kirişler dörtgeninin, kenar uzunlukları a, b, c, d olsun. Bu durumda çevre uzunluğu Ç=a + b + c + d olur. Çevrenin uzunluğunun yarısı; Ç/2 değeri u olsun. Yani u = (a + b + c + d)/2 olsun. Kirişler dörtgenin alanı Heron bağıntısı ile Alan = √[(u - a)(u - b)(u - c)(u - d)] şeklinde ifade edilir. Bu alan formülü trigonometrik oranlar kullanılarak ispat edilebilir. Bu formül, Öklid geometrisinde, Brahmagupta formülü olarak bilinir. Kenarların uzunlukları verilen herhangi bir kirişler dörtgeninin alanını bulmak için kullanımı kolaylık sağlar. (Bknz. Heron Alan Formülü İspatı)
TEOREM:
|DC|=|CE| olmak üzere DCE ikizkenar üçgeni alınsın. C köşesinden
[DE] kenarını dik kesmeyen rastgele [AG ışını alalım. Bu ışın üzerinde, açıortay olacak biçimde mDFC=mCFE eşitliğini sağlayan bir tek F noktası vardır. Üstelik
bu nokta, DCE ikizkenar üçgeninin çevrel çemberi üzerinde bulunur.
Yani: DFEC dörtgeni kirişler dörtgenidir. Teoremin ispatı yapılırken; DFC ve CFE üçgenlerinde ayrı ayrı sinüs teoremleri yazılıp bu eşitlikler birleştirilir. Aşağıdaki şekilde çizimi yapılmıştır.
Kirişler dörtgeni ile ilgili bazı sonuçlar şu şekildedir: Her ikizkenar yamuk aynı zamanda kirişler dörtgenidir. İkizkenar olmayan herhangi bir yamuk kirişler dörtgeni olamaz. Her dikdörtgen, aynı zamanda kirişler dörtgenidir. Her kare, aynı zamanda kirişler dörtgenidir. Dikdörtgen olmayan herhangi bir paralelkenar, kirişler dörtgeni olamaz.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

Aşağıdaki Yazılar İlginizi Çekebilir!!!
16.06.2016 - 0 Yorum Medeniyet kelimesi Arapça'da esasında şehir anlamına gelen "medine" kelimesinden türemiş bir isim olduğu söylenebilir. Daha farklı anlamlara göre Arapça "din (dyn)" kelimesi ile de ortak anlamları olduğu belirtilmiştir. Kök anlamları…
25.11.2012 - 0 YorumOnbeşinci yüzyılda yaşamış önemli bir astronomi ve matematik bilginidir. (1403, Semerkand - 16 Aralık 1474, İstanbul) Asıl adı Ali b. Muhammed'dir. Babası Timur’un torunu olan Uluğ Bey’in doğancıbaşısı idi. “Kuşçu” lakabı buradan gelmektedir. …
23.11.2010 - 0 Yorum Hacet Namazı: Âhirete veya dünyaya ait bir dileği bulunan kimse, güzelce abdest alır ve bir rivayete göre dört, diğer bir rivayete göre on iki rekât namazı yatsıdan sonra kılar. Sonra Yüce Allah'a hamd eder, Peygamber Efendimize de…
29.02.2016 - 0 Yorum ax2+bx+c=0 biçimindeki denkleme ikinci dereceden bir bilinmeyenli denklem denir. Burada a, b, c sayılarına denklemin katsayıları, c ye ise sabit terim denir. Bu denklemi sağlayan x gerçek sayı değerleri varsa bunlara denklemin kökleri,…
11.11.2010 - 0 YorumKorku Namazı 399- Korku namazı, İmam Azam ile İmam Muhammed'e göre, bugün de caizdir. İmam Ebû Yusuf'a göre, bu namaz Peygamber Efendimizin devrine ait idi. Korku namazından maksad, düşman saldırısı, sel ve yangın…
13.02.2016 - 0 Yorum Fizik öğrenmenin en eğlenceli yolu olarak Algodoo Fizik simülasyon programını deneyebilirsiniz. Programla fizik kurallarını test etme ve deneyerek öğrenme şansına sahipsiniz. Eğlenceli ve renkli bir arayüze sahip olan programla isterseniz kendi…
21.05.2010 - 0 Yorum Susarak anlattın bütün gizliyi Sakladım duygumu ben konuşarak Bir acı tarlası sessiz yüzünde Aşkı yürürlüğe koyma savaşı İçimde bir düzen kaynaşmaktadır Büyük ve çekingen bakışlarından En iyi anlatış artık susmaktır Anladım bunu ben seni…
28.03.2018 - 0 YorumNesbitt, tarafından 1903'te Educational Times isimli dergiye bir geometrik eşitsizlik olarak gönderilmiştir. (A. M. Nesbitt, Problem 15114, Educational Times, 3 (1903), 37-38) Aslında eşitsizliğin bir kısmı herhangi üç a,b,c pozitif gerçel sayısı…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
fonksiyon
(28)
sayılar
(27)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...