Küre yüzeyinde katı açı kavramı

Etiketler :
Steradyan: kürenin merkezini tepe olarak alan ve küre yüzeyinde bu kürenin yarıçapına eşit bir kare kadar alan ayıran uzay açısına eşittir. Boyutsuz bir büyüklük olup, 1995 yılından itibaren türetilmiş steradyan (sr) birim olarak tanımlanmıştır. Steradyen eskiden bir SI tamamlayıcı birimi iken bu kategori, 1995 yılında Uluslararası ölçü birimleri standartlarına (SI: Système International (d'unités)) içeriğinden kaldırılarak, steradian SI türetilmiş bir birim olarak kabul edilmiştir. Steradyan (Katı açı), genelde Omega (Ω) sembolü ile gösterilir. Standart kısaltması "sr" olarak verilmiştir. 
Tek boyutlu bir uzayda sadece çizgilerden bahsedilir. İki boyutlu uzayda ise bir yüzey ve alan meydana gelir. Açıyı bu nedenle iki boyutlu bir düzlemde tanımlayabiliriz. Üç boyutta ise artık yüzeyin yanında hacimden de söz edilebilir. Üç boyutlu bir uzayda, herhangi bir açı tanımlanırken, "Steradyan" (katı açı-solid angle) şeklinde bir türetilmiş bir birim kullanılır. "Birim kürenin üzerinde 1 birim kare alanın oluşturduğu açı bir steradyan'dır" şeklinde kabaca bir tanımı yapılabilir. Kısaca küre merkezinden görünen konik açıya "steradyan" denir.  

Bir kürenin alanı, 4.π.r² iken bu alanı steradyan birimi ile ifade etmek gerekirse yarıçaptan bağımsız olarak sadece 4π (sr) olarak söyleyebiliriz. Bu durumda bütün kürelerde 1 steradyanlık katı açının küre yüzeyine olan ilişkisi; 1 sr= Kürenin yüzey alanı (4.π.r²) / 4.π olur ki bu da küre yüzeyinin alanının yaklaşık %8'ine karşılık gelir.  A küre yüzeyinin alanı olmak üzere, 1sr=A/4.π = %7,9577.A olur. (İki boyutta bir açı maksimum 360° derece veya 2π radyan olurken, üç boyutta maximum 4π steradyan olur. Güncel hayatta çok kullanılmayan bir kavram olan steradyan (katı açı) için söylenen bu rakamlar, bizlere alışık olduğumuz bir his vermeyebilir. Mesela dümdüz bir arazide bulunduğumuz noktaya göre gökyüzü, yarım küre biçiminde olduğu için 2π steradyandır. İçinde bulunduğumuz dikdörtgenler prizması şeklindeki bir odanın tavanı ile duvarlarının birleştiği bir köşe noktasına göre, odanın diğer duvarlarının toplam katı açısı; π/2 steradyandır. Yani bu katı açı, köşe merkezli hayali kürenin sekizde birini örter, bu nedenle bu katı açının ölçüsü 4π/8  bölümünden π/2 steradyan bulunur. 

Düzlem üzerindeki açılar ile küre yüzeyindeki katı açılar (steradyan) arasında da alan hesaplamalarıyla bağıntılar bulunabilir. Geometrik şekillerin katı açıları bu bağıntılar yardımıyla kolayca hesaplanabilir. Mesela kürede bir noktadan küre merkezinin tam karşısındaki bir daireye baktığımızı varsayalım. Bu problem bir koninin tepe noktasına göre, tabanının katı açısının sorulaması ile eş değer anlamdadır.  Buna göre merkeze göre katı açısını hesaplamak istediğimiz dairenin küre üzerine izdüşümü olan "küre kapağının" alanını hesaplayıp, yarıçap olan R'nin karesine bölerek katı açının ölçüsünü bulabiliriz. Bu küre kapağın alanı, kürenin ekvator çemberinin çevresinin (R-h) ile çarpımıdır. (Bkz. Kürede Alan ve Hacim Bağıntıları)
Steradyan ölçü birimi, özellikle fizikte yaygın olarak kullanılır. Işık hesaplamalarında bu katı açı (steradyan) birimi kullanılır. Mesela bir gökcisminden gelen ışığın şiddetini ölçmek için watt/sr kullanılabilir. Anten mühendisleri antenin ışımasını ölçmek için bu steradyan kavramı kullanır. 

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Artan ve Azalan Fonksiyonlar23.08.2016 - 0 Yorum Bir fonksiyonun artan ya da azalan olduğunu bulmak için türev konusunu işlemeden bulmak her zaman işe yaramayabilir. Bunun için en kesin tespit türev sayesinde yapılabilir. Eğer türev konusu bilinmiyorsa o zaman fonksiyonun grafiğini çizerek…
  • Susuz değirmenlerin ne ile döner çarhı02.08.2012 - 0 Yorum Susuz değirmenlerin ne ile döner çarhı / Kerem etmeyen beyin fakirden nedir farkı  (Tahsin Kurt) Tahsin Kurt bey tarafından Celi Ta’lik kıtası olarak yazılmıştır.
  • Göz Yanılması20.06.2014 - 0 YorumMatematiksel olarak ispatlayabileceğimiz bir göz yanılmasını burada paylaşmak istiyorum. Dikkatlice incelendiğinde bile gözle anlaşılamayacak kadar zekice bir gösteriyi sizinle paylaşıyorum. Bir kalıp çikolatanın şekilde videoda gösterildiği gibi…
  • Perspektif Çizimi Temel Elemanları11.02.2015 - 1 Yorum İzdüşüm: Bir nesnenin bir düzlem üzerine düşürülen görüntüsüne izdüşüm denir. Perspektif izdüşüm: Cisimlerin görünüşünü iki boyutlu düzlem üzerinde, insan gözünün gördüğü gibi üç boyutlu olarak çizebilme olanağını sağlayan izdüşüm…
  • Nemime-Laf taşıma (Koğuculuk)15.05.2022 - 0 YorumSözlükte “fısıltı halinde konuşmak, birinin sözünü yalan katarak nakletmek” anlamındaki nemm kökünden türeyen nemîme kelimesi, “insanlar arasında kötülük, düşmanlık ve bozgunculuk maksadıyla söz taşıma, kovculuk yapma, gammazlık” demektir.…
  • Vektörün Normu (Uzunluğu)07.05.2016 - 0 YorumBaşlangıç noktası orijin olan vektörlere konum(yer) vektörü denir. Eğer vektör orjinde değilse vektörün uzunluğu ve yönünü değiştirmemek kaydıyla orjine taşıyabiliriz. A vektörünün uzunluğu (normu), ||A|| sembolü ile gösterilir."i", "j" ve "k" temel…
  • Matematik Cepte Uygulaması09.12.2015 - 0 Yorum Öğrenci ve öğretmenleri Matematik Cepte uygulamasıyla buluşturacak olan Balıkesir/Karesi Belediyesi, “Karesi’de artık cevapsız soru kalmayacak” sloganıyla Türkiye’ye örnek olacak bir projeye imza atıyor. Karesi Belediyesi öğrenciler ve…
  • Limitte ∞-∞ belirsizliği27.08.2016 - 3 Yorum ∞-∞ belirsizliği limit çözümleri yapılırken ∞/∞ belirsizliği (Bkz.Limitte ∞/∞ belirsizliği)  veya 0/0 belirsizliklerine (Bkz.Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde, limit…