Net Fikir » Tüm Yazılar
İki kare farkı özdeşliği ve modellemesi
W. George Horner ve Horner Yöntemi
Horner metodu, İngiliz matematikçi William George Horner (9 Haziran 1786-22 Eylül 1837) tarafından akademik dünyaya kazandırılmıştır. George Horner, bilimsel yazı hayatına 1810’lu yıllarda başlamıştır. "The Ladies’ Diary" ve "The Gentleman’s Diary" gibi dönemin önemli dergilerinde çeşitli matematik problemleri yayımlamıştır. 1819 yılında, "Royal Society (Kraliyet Cemiyeti)’nin Philosophical Transactions" dergisinde yayımlanan makalesiyle Horner Yöntemini bilim dünyasına tanıtmıştır. George Horner adıyla bilim dünyasına tanıtılmış olan "Polinom Bölmesi Yöntemi", Horner’den çok önceleri, 13. yüzyılda Çinliler tarafından Zhu Shijie (ö. 1300?) adıyla bilinmekteydi. William Horner, 1819 yılında yayımladığı makalesiyle bu yöntemi Avrupa’ya tanıtmış ve polinomlarda bölme işleminin daha hızlı ve düzenli bir biçimde hesaplanmasını sağlayan bu yaklaşımı açıklamıştır. Tarihsel olarak, bu yönteme benzer fikirler Horner’dan önce Joseph-Louis Lagrange ve René Descartes gibi matematikçiler tarafından da Avrupa’da kısmen kullanılmıştır. Buna rağmen yöntemi sistematik bir hale getirip yaygınlaştıran kişi William George Horner olduğu için bu teknik onun adıyla anılmaktadır.
Tam Değer Fonksiyonu
Signum (İşaret) Fonksiyonu
Lineer Trigonometrik Denklemlerin Çözümü
Homojen Trigonometrik Denklemler
sin ve cos fonksiyonlarına bağlı olarak verilen birinci veya ikinci dereceden tek değişkenli a ve b reel katsayılar olmak üzere aynı dereceden a.sinx+bcosx=0 şeklindeki denklemlere homojen denklem denir. Bu denklemlerin çözüm kümeleri bulunurken denklemler, tanjant veya cotanjant denklemlerine dönüştürülmeye çalışılır. Bunun için denklemin her iki tarafı sinx veya cosx ile taraf tarafa bölünür. (Bknz: Trigonometrik Denklemlerin Çözüm Kümesi)
Temel Trigonometrik Denklemlerin Çözümü
Trigonometrik fonksiyonlarla birlikte verilen denklemlerin çözüm kümelerinin bulunmasında trigonometrik fonksiyonların genel özelliklerinden ve birim çemberden yararlanılır. (Bknz. Trigonometrik Fonksiyonlar) Verilen açı ölçülerinin birim çember üzerinde gösterilmesi ve bu açı değerine esas ölçü olarak eşit olan diğer açıların da varlığının kabul edilmesi ile trigonometrik denklemlerin genel çözümleri yazılır. (Bknz: Birim Çember)
Tanjant Teoremi ve İspatı
Bir ABC üçgeninde iç açılar; A, B, ve C olmak üzere bunlardan B ve C açıları ve bunlara ait kenar uzunlukları verildiğinde b>c olmak üzere kenar uzunlukları ve açılar arasında taanjant teoremi uygulanır. Buna göre kenarların farkının kenarların toplamına oranı, bu kenarların ait olduğu açıların farkının yarısının tanjant değeri ile bu açıların toplamlarının yarısının tanjant değerine bölümü aynı oranı verir.




