Doğrunun Analitiği "Doğrunun Eğimi ve Denklemi"

Etiketler :
Eğim, dikey mesafenin yatay mesafeye oranlanması ile bulunur. Eğim, ondalık kesir veya yüzde olarak ifade edilir.Bir doğruda, eğim hesaplanırken doğrunun eksenle yaptığı açının tanjantına bakılır. Tanjant, bir dik üçgende karşı kenar uzunluğunu komşu kenar uzunluğuna bölmektir. Denklemi y = ax + b biçiminde olan bir doğrunun eğimi, x'in kat sayısına yani a değerine eşittir. Eğer doğru denklemi bu şekilde verilmezse ya denklemde eşitliğin bir tarafında y tek başına bırakılarak yazılmaya çalışır ya da x'in katsayısı y nin katsayısına oranlanır başına bir "-"yazılır.
Örnek: y = 2x + 5 doğru denkleminin eğimi 2'dir.
Örnek: y=-15x+4 doğru denkleminin eğimi -15 tir.
Örnek: 3x+4y=5 denkleminin eğimi -3/4 tür.
Örnek: -3x+5y=8 denkleminin eğimi 3/5 tür.
Örnek: 6x-3y=1 doğrusunun eğimi 6/3=2 olur.

Yandaki şekillerde d doğrusunun farklı durumlarına karşılık oluşan (alfa) eğim açısı gösterilmiştir. Herhangi bir doğru verildiğinde o doğrunun x ekseni ile yaptığı açı biliniyorsa doğrunun eğimi kolayca bulunabilir. Açının tanjantı doğrunun eğimidir.

Örnek: Doğru x ekseni ile 45 derecelik açı yapıyorsa eğimi tan45=1 olur. Eğer doğru x ekseni ile 135 derecelik açı yapıyorsa doğrunun eğimi tan135=-1 olur.

x eksenine paralel doğruların eğimleri 0'dır.
y eksenine paralel doğruların eğimleri ise doğru x eksenine dik olduğu için açısal olarak tanjant fonksiyonu burada tanımlanamadığından doğruların eğimlerinden söz edilemez. Eğim=Tanımsızdır.

Örnek: y=3 doğrusunun eğimi x eksenine tam paralel bir doğru olduğu için her hangi bir açı oluşmayacaktır bu nedenle de bu doğrunun eğimi "0" olacaktır. x=5 doğrusunun eğimi yoktur.
Paralel Doğrular; Hiç bir ortak noktası olmayan doğrulara paralel doğrular denir. Paralel doğrular bir düzlem üzerinde hiç bir zaman kesişmezler.Paralel doğruların eğimleri eşittir. 
Dik Doğrular; İki doğrunun keşisimleri varsa ve bu doğruların aralarındaki açı 90 derece ise bu doğrular birbirine diktir. Dik olan doğruların eğimleri çarpımı (-1)'dir. Yeni birinin eğimi dik olan diğer doğrunun eğiminin çarpma işlemine göre tersinin negatif işaretlisidir.
Doğrunun denkleminin veren bu ifade; aslında doğru üzerinde yer alan iki farklı noktanın arasındaki eğim hesabından yola çıkılarak elde edilmiş bir denklemdir. Bu denklem bulunurken doğru üzerinde yer alan her iki noktanın arasında kalan eğimler eşit olması kuralı kullanılır.

Sadece iki noktası verilen doğruların denklemi yazılırken öncelikle iki noktadan doğrunun eğimi bulunur. Daha sonra yukarıdaki bir nokta ve doğrunun eğimi yardımıyla doğrunun denklemi yazılır.

Doğruların Grafikleri:Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur. x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır. Eğer bir doğrunun eksenleri kestiği x ve y değerleri 0 çıkıyorsa bu doğru orijinden geçer. Bu durumda doğrunun koordinat düzlemindeki 1.veya 2.bölgeye olan uzantısının bulunması gerekecektir. Bunu belirlemek için de x yerine farklı bir nokta alınarak y değeri bulunur bu noktanın bulunduğu bölge ile orijinden doğru grafiği çizilir.
Ayrıntılı grafik çizme işlemleri için doğru grafiği çizme yazımızı okuyabilirsiniz. (Bkz. http://muallims.blogspot.com.tr/2009/03/dogrularn-grafigini-cizme.html )

3 yorum:

  1. teşekkürler

    YanıtlaSil
  2. çok teşekkür ederim çok yardımcı oldun adsız kişi

    YanıtlaSil
  3. Bunu bu siteye koyandan allah razı olsun matematik proje ödevime büyük bir katkı sağladınız. ellerinize sağlık...

    YanıtlaSil

Popüler Yayınlar

Sosyal Paylaşım

Icon Icon Icon Icon

Lütfen yazılarımızla ilgili yorum yapmaktan çekinmeyin. Kırık linkleri ve hatalı içerikleri mutlaka bize ilgili sayfa altında yorum yaparak bildiriniz. Blog sayfalarımızda ilginizi çekebilecek diğer yazılar için blog arşivimizi kullanabilirsiniz.

Son Yorumlar

Yararlı Linkler