Harzemli'nin "Cebir Kitabı" kısaca tanımlamak gerekirse; On tabanlı sayı sisteminin ve dört işleminin tanımı, birinci ve ikinci derece denklem oluşturma öğelerinin tanımı. (kök-bilinmeyen, kare- bilinmeyenin karesi, kare ya da kök olmayan yalın sayı), birinci ve ikinci derece eşitlik- ya da denklem kurma, cebr ve mukabele işlemleri, cebirsel ifadeler üzerine çeşitli işlemler, karekök, İkinci derece denklemin kökünü bulma yöntemi, denklem çözümlerinin geometrik ispat ve modellemelerini içerir. Yer alan, birinci ve ikinci derece denklem türleri: bx = c, ax = c, ax² = bx, ax²+bx=c, ax²+c = bx ve ax² = bx+c tanımı ile denklem kurma yolu ile çözümü verilen, miras, alan, faiz ve arazi problemlerinin sistemli-açıklamalı, çok sayıda çözüm örnekleri sözel biçimde aktararak, çeşitli matematiksel ve geometrik modellemelerle eserde sıralanmaktadır.
Net Fikir » matematikçiler » Harezmi'ye Ün Kazandıran "Cebir Kitabi"
Harezmi'ye Ün Kazandıran "Cebir Kitabi"
Etiketler :
algoritma
cebir
islam dünyasında bilim çalışmaları
matematikçiler
Harzemli'nin "Cebir Kitabı" kısaca tanımlamak gerekirse; On tabanlı sayı sisteminin ve dört işleminin tanımı, birinci ve ikinci derece denklem oluşturma öğelerinin tanımı. (kök-bilinmeyen, kare- bilinmeyenin karesi, kare ya da kök olmayan yalın sayı), birinci ve ikinci derece eşitlik- ya da denklem kurma, cebr ve mukabele işlemleri, cebirsel ifadeler üzerine çeşitli işlemler, karekök, İkinci derece denklemin kökünü bulma yöntemi, denklem çözümlerinin geometrik ispat ve modellemelerini içerir. Yer alan, birinci ve ikinci derece denklem türleri: bx = c, ax = c, ax² = bx, ax²+bx=c, ax²+c = bx ve ax² = bx+c tanımı ile denklem kurma yolu ile çözümü verilen, miras, alan, faiz ve arazi problemlerinin sistemli-açıklamalı, çok sayıda çözüm örnekleri sözel biçimde aktararak, çeşitli matematiksel ve geometrik modellemelerle eserde sıralanmaktadır.
Harzemli'nin bilim tarihinde kısaca, "Cebir Kitabı" adı ile anılan eseri, " Kitab-ül Muhtasar Fi Hesab al-Cebr Ve'l Mukabele" , Türkçe deyişle; "Özetlenmiş , Benzer terimleri yoketme-Mukabele ve Bilinenleri bir tarafta toplama-Cebir, Hesaplamasının Elkitabi " dir. Harzemli Dar Ül Hikmede , çesitli matematiksel problemlerin çözümü üzerinde çalışırken, Hindli matemetikçilerin yeni bir aritmetik üzerinde çalıştıklarını öğrenir. M.S. 825 Tarihlerinde Halife Memun'un izni ile, Hint matematiğini izlemek üzere Hindistan'a gider. Hint matemetikçilerinin kullandığı yeni sayı sistemini ve aritmetiği bütün yönleri ile inceler, notlar alır ve bilgi yükü ile Bağdat'a döner.
Bilim tarihçilerinin bir konuyu işleme zenginliğini görmek ve bu yaklaşımın ulaşımlarını değerlendirmek için, bilim tarihçisi B. K. Stonaker'in , "Famous Mathematicians" (1966, N.York) isimli kitabından Harzemli'nin Bağdat dönüşü hikayesini okuyalım: " Kervan Bağdat'a doğru tekrar yola çıktı. Havanın sıcaklığından, çölde yolculuk çok zor geçiyordu. Kervan bin güçlükle Bağdat'a ulaştı. Harzemli'yi Halife Memun karşıladı. Ve Harzemli " Allah, bana çok yararlı ve başarılı bir gezi bahşetti. dedi. Harzemli koltuğunda bir deste kağıt ve kitap taşıyordu. Bir ara kağıtların bir bölümü yere düştü. Birinin üzerinde şifre gibi bilinmeyen simgeler vardı. Halife bu acayip şekilleri görünce kızar gibi oldu ve "Bunlar nedir?"diye sordu. Harzemli." Bunlar Hint sayılarıdır." Diye cevapladı. "Bunlar sayıların tanımlanmasını ve aritmetik işlemleri çok kolaylaştıracaktır efendim." şeklinde niyetini açıkladı. Halife, Harzemli'nin Hindistan'dan getirdiği yenilikleri bundan sonra daha iyi karşıladı ve "geliştirip herkese yararlı hale getirmesini ve diğerlerine öğretmesini buyurdu.".. Harzemli, Hint gezisi dönüşünde, orada matematik işlemlerde kullanımını incelediği onlu sayı birimleri (1,2,3,.,9 )ile kurulan sayıların işlemsel kullanımı yöntemlerini kendi çabalarıyla geliştirdi. Harezmi'nin çalışmalarından sonra bu sayı sistemleri, sonradan Arap sayıları diye anılan onlu sayı sistemini oluşturmuştur. Aritmetiğe onlu sayı sisteminin girişi Harzemli'nin eserinin çevirileri ile dünyaya yayılmıştır. Cebirde denklem çözümü ve güncel problemlerin çözümünde kullanmak için çalışmalar yaptı. Kendine özgü sözlü biçimde denklem çözümünü içeren bir yöntem geliştirdi. Denklem çözme yöntemini öğretmeyi amaçlayan bir kitap hazırladı.
Harzemli "Cebir Kitabı"nın önsözünde :" Lütüfkar ve merhametli Allah adına, bu eser Harzemli Musa Oğlu Muhammed tarafından yazılmıştır. O şöyle bir başlangıç yapmak ister: Allah'a şükürler olsun ki, onun iyilikseverliğine ve korumacılığına sığınabildim. Onun emirlerine uydum. Şükürler olsun ki, görevimi yapmak için Onun değerli ve sürekli yardım severliğinden yararlandım. Onun kudretli, eksilmeyen yüceliğini ve saygın büyüklüğünü kabul ederim. O Muhammedi Allah'ın elçisine yakışır bir görevle görevlendirdi. Ne zaman haklılık zayıflasa, doğru yolda ilerlemek çaresiz kalsa, Onun yardımları yetişti. Allah, sadık komutan Al-Memun 'u ilim sevgisi ile ünlü kıldı öyle ki, O bilim adamlarından yardım ve desteğini hiç eksik etmedi. Onları güçlüklerden korudu. O halifeliği yanında, yüceltmede, ödünlendirmede , adalet ve hak dağıtmada da çömertti.. Beni "bir araya getirme-cebr ve sadeleştirme-mukabele" kuralları ile hesaplama üzerine özlü bir eser yazmaya teşvik etti, bana cesaret verdi.."
Bir kaynağa göre, Harzemli "cebir Kitabı"nı yazar ve Halife Memun'a sunar. Memun: " Harzemli çok güzel ama bunları halkım anlayıp kullanamaz. Haydi git yeniden, öyle yaz ki herkes bu kurallarla problem çözebilsin" der. Bu buyrukla, Harzemli konuyu yeniden inceler ve kitabını yeniden herkesin anlayıp, uygulayabileceği sistemli bir anlatım yapısı düzeni ile düzenler. Gerek, Harzemli' nin önsözünde belirttiği; Memun'un "Özlü bir kitap yaz." Gerekse, yukarda sözü edilen; " yeniden öyle yaz ki herkes anlayıp kullanabilsin" cümlelernin içinde yatan anlamı, Harzemli öylesine değerlendirmiş ki, özgün bir anlatım yöntemi oluşturarak, çığır açan üç kavramı birbirinin bütünleyicisi olarak ortaya koymuştur. Bunlar; onlu sayı sistemi , denklem kuramı ile çözüm ve yeni çözümleme yöntemi ya da algoritmik anlatımlardır ve bütün bunlar ayrı ayrı önem taşıyan Ortaçağ biliminin ilklerindendir.
Harzemli'nin çalıştığı ortam gereği Arapça el yazması ile hazırladığı "Cebir Kitabı", 11. Yüzyılın sonlarında, İspanya yolu ile Avrupa'ya ulaştıktan sonra , birkaç kez Latince, Italyanca ve sonra İngilizce'ye, çevrilmiş, bu çevirilerde özgün elyazmasının farklı kopyaları kullanılmıştır. Ayrıca sayısı yüzden fazla araştırmacı, Harezmi'nin kitabı üzerine değerlendirme ve yorum yayımlamıştır. Çevirilerden en yaygın kullanılanı; M.S. 1145 yılında Chester'lı Robert sanı ile tanınan araştırmacının İspanya'nın Segova kentinde Latinceye çevirdiği "Al-Khwraizmi's Al-Jabr" isimli kitabı ile Frederic Rosen'ın 1831 deki İngilizce çevirisi " The Algebra of Muhammed Ben Musa" isimli kitabıdır. 19. Yüzyılda en çok yararlanılan kaynaklar ise, L.C. Karpinski'nin Chester çevirisinden yararlanarak , 1915 deki İngilizce, " Robert of Chester's Latin Translation of Al-Khowarizmi" çeviri ve değerlendirmesi ile 1989 Yılında Barnabas B. Hughes'in değerlendirme, karşılaştırma ve yorumu içeren İngilizce "Robert of Chester's Latin Translation of Al-Khwarizmi's Al-Jabr " adlı eserleridir.
Harezmî önce bu denklemlerin analitik çözümlerini verir, daha sonra katışık denklemlerin geometrik ispatını yapar. Kitaptaki denklem çözümlerinden birine örnek olarak x²+21=10x denkleminin iki farklı kökünü geometrik modellemeyle vermiştir. x²-2x-5x= 6=0 denkleminde iyileştirme ile negatif terimleri diğer tarafa atmayı ifade ederek denklemi x²=+5x+2x+6 şekline dönüştürerek modellemiştir. Sadeleştirme ile benzer terimlerin birleştirilmesini ifade eder ve bu durumda denklem; x² = +7x+6 şekline dönüştürerek denklemlerin sade hallerinden geometrik modellemelerini alan hesabından yararlanarak açıklamıştır. Harezmî özel olarak x² +10x-39=0 denkleminin çözümünü geometrik olarak aşağıdaki gibi bulmuştur.
Harzemli'nin "Cebir Kitabı" kısaca tanımlamak gerekirse; On tabanlı sayı sisteminin ve dört işleminin tanımı, birinci ve ikinci derece denklem oluşturma öğelerinin tanımı. (kök-bilinmeyen, kare- bilinmeyenin karesi, kare ya da kök olmayan yalın sayı), birinci ve ikinci derece eşitlik- ya da denklem kurma, cebr ve mukabele işlemleri, cebirsel ifadeler üzerine çeşitli işlemler, karekök, İkinci derece denklemin kökünü bulma yöntemi, denklem çözümlerinin geometrik ispat ve modellemelerini içerir. Yer alan, birinci ve ikinci derece denklem türleri: bx = c, ax = c, ax² = bx, ax²+bx=c, ax²+c = bx ve ax² = bx+c tanımı ile denklem kurma yolu ile çözümü verilen, miras, alan, faiz ve arazi problemlerinin sistemli-açıklamalı, çok sayıda çözüm örnekleri sözel biçimde aktararak, çeşitli matematiksel ve geometrik modellemelerle eserde sıralanmaktadır.
Takip et: @kpancar |
|
''Harezmi'ye Ün Kazandıran "Cebir Kitabi"'' Bu Blog yazısı;
Nisan 22, 2009 tarihinde algoritma, cebir, islam dünyasında bilim çalışmaları, matematikçiler kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamı...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkara...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...