Dörtgende Alan Bağıntıları

Etiketler :
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır.  Burada özel olarak açı 90 derece olarak alınırsa yani köşegenler dik kesişirse o zaman dörtgenin alanı köşegenlerin çarpımının yarsı kadar olur.

Bir dörtgenin kenarlarının orta noktaları birleştirildiğinde, ortaya çıkan dörtgenin alanı, büyük dörtgenin alanın yarısı kadardır. Bu şekilde oluşturulmuş dörtgenlerle ilgili kenar ve uzunluk bağıntılarına ait ispatlar, daha önceki yazımızda gösterilmiştir.

Dörtgenin alanı köşegen vektörleri verilirse (Bkz. Vektörlerde iç çarpım) ve norm işlemleri yardımıyla da bulunabilir.  Burada önemli olan vektörlerin koordinatlarının bilinmesi ve vektör işlemlerine vakıf olabilmektir. (Bkz.  iki-vektorün vektörel çarpmı)
Herhangi bir dörtgen için  p ve q dörtgenin köşegen vektörleri olmak üzere dörtgenin alanı;
Dörtgenler köşegenleri vasıtasıyla üçgenlere parçalanarak dönüştürülebileceğinden alanı ile ilgili çeşitli özellikler elde edilebilir. Bu bağıntıların tamamı üçgen özelliklerinden elde edilebilecek alan özellikleridir. 




Dörtgenlerin alanları vektörler yoluyla da bulunabilir. Bunun için vektörelerde iç çarpım özelliklerinden yararlanılır. Farklı dörtgen tipleri için ayrı ayrı vektörel alan formülleri elde edilebilir. (Bkz. Dörtgenlerin Vektörel alan formülleri)

7 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Maurits Cornelis Escher03.02.2010 - 0 Yorum Maurits Cornelis Escher veya daha çok kullanılan şekliyle M.C. Escher 1898 yılında Hollanda’da doğdu. 1918 yılına kadar, inşaat mühendisi olan babası George Escher, annesi Sarah ve dört erkek kardeşiyle birlikte, doğduğu kent olan Arnhem’de…
  • Hatem-i Esem'den zühd hayatı tavsiyesi21.01.2018 - 0 YorumEbû Berze el-Eslemî (r.a)’den rivâyet edildiğine göre Rasûlullah (s.a.v) şöyle buyurmuştur: “Hiçbir kul, kıyamet günü ömrünü nerede tükettiğinden, ilmiyle ne yaptığından, malını nereden kazanıp nereye harcadığından, vücudunu nerede yıprattığından…
  • Türev ve Uygulamaları ÖSYS Soruları29.04.2016 - 0 YorumTürev ile ilgili ÖSYM tarafından geçmiş yıllarda üniversite seçme/giriş sınavlarındaki sorulardan yayınlanmış olan soruları incelemek için tıklayınız.
  • Gottlob  Frege ve Mantık23.04.2013 - 0 Yorum "Frege (1848-1925): Gottlob  Frege  analitik  felsefenin  en  önemli  aracını  meydana  getiren  modern matematiksel  mantığı  bularak,  analitik  felsefenin  seyrini…
  • Kaza Edilmesi Gereken ve Gerekmeyen Oruçlar15.03.2010 - 0 Yorum 127- Yolculuk veya hastalık özrü ile Ramazan orucunu tutmamış olan kimse, bunları kaza etmeye elverişli bir vakit bulamadan önce ölse, üzerine kaza gerekmediği gibi, fidye vermesi de lazım gelmez. Ancak oruçları için fidye verilmesini vasiyet…
  • Üçgen eşitsizliği cebirsel ispatı28.03.2021 - 0 YorumÜçgen Eşitsizliği: Bir üçgende herhangi bir kenarın uzunluğu, diğer iki kenarın uzunlukları farkından büyük, toplamından küçüktür. Bir üçgenin çizilebilmesi için olmazsa olmaz şart üçgen eşitsizliğidir. Üçgen eşitsizliği hakkında detaylı açıklama ve…
  • Doğrusal Denklem Sistemleri19.11.2015 - 3 Yorumax+by+cz+.......= r  tipindeki a,b,c,....sayıları reel sayı olmak üzere bu şekilde yazılabilen denklemlere doğrusal (lineer) denklemler denir. Bu denklemlerin iki ya da daha fazlasının bir araya gelmesi ile oluşturulan denklem sistemine de…
  • Derscartes'in Yaşamı ve Felsefe23.04.2013 - 0 Yorum "Descartes (1596-1650): Rönesans’ın başlangıcından beri yeni bir kültür, yeni bir bilim kurma çabalarını felsefesinde büyük bir senteze kavuşturan Descartes, Yeni Çağ felsefesinin kurucusu ve babasıdır. Descartes felsefesi, kendinden sonra, çeşitli…