Katı Cisimlerin Alan ve Hacim Formülleri

Birbirine paralel olacak şekilde seçilen iki çokgenin karşılıklı olarak köşe noktalarını birleştiren doğruların arasında kalan kapalı geometrik şekle katı cisim denir. Bu katı cisimler tabanında bulunan geometrik şekle göre isimlendirilir. Bütün kenar uzunlukları birbirine eşit olan katı cisimlere düzgün katı cisim adı verilir. 

Türevle Grafik Çizimi

Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamıyla çizmek için genel şartları içerir. Daha üst fonksiyonların çiziminde çeşitli matematik yazılımları kullanılabilir. Bir fonksiyonun grafiğini çizmek o fonksiyonun fotoğrafını çekmek gibi olduğundan bize fonksiyon hakkında kısa ve net bir şekilde görsel bir bilgi verir.
1) Fonksiyonun tanım kümesi bulunur. Bulunan tanım kümesi çizim yapılırken dikkate alınır.
2) Fonksiyon periyodik bir fonksiyon ise periyodu bulunur. (Trigonometrik Fonksiyonlar gibi)
3) Varsa Yatay ve düşey asimptotları bulunur. (Eğer eğik-eğri asimptotu varsa ayrıca belirlenir)
4) x ve y eksenlerini kestiği noktalar bulunur. x=0 için y eksenini kesen nokta, y=0 için x eksenini kesen nokta bulunur. x ve y eksenini kesmeyen fonksiyonlar ayrıca belirlenir.
5) Fonksiyonun birinci türevi alınır. Ekstremum noktaları bulunur. Maksimum ve minimum olduğu yerler ile artan ve azalan olduğu durumlar belirlenir.
6) Fonksiyonun ikinci türevi alınarak büküm(dönüm) noktası varsa bulunur. 
7) Fonksiyonun birinci ve ikinci türevine göre işaret tablosu yapılarak grafiğin artan azalan olduğu aralıklar ile çukurluk ve tümseklik (konveks ve konkav) aralıkları bulunur.
8) Bütün bu veriler ışığında fonksiyonun grafiği çizilir.

| | | Devamı... 9 yorum

Düşey ve Yatay Asimptot

Bir fonksiyonun grafiği çizildiğinde bu grafikte sonsuza giden bir kolu varsa, bu kol üzerindeki rastgele bir nokta alındığında bu nokta sonsuza doğru götürüldüğünde bu noktanın bir doğruya ya da eğriye olan uzaklığı da sıfıra yaklaşıyorsa (limit değeri olarak) bu doğru ya da eğriye o fonksiyonun için asimptot değeri denir. Asimptotlar yatay ve düşey (dikey) olmak üzere, iki boyutlu uzayda iki kısımda incelenir.

Maksimum ve Minimum Problemleri

Maksimum ve minimum problemlerinde öncelikle verilen ifadelerden tek değişkene bağlı bir fonksiyon yazılır. Bu yazılan fonksiyonun istenen değişkene göre türevi alınır. Daha sonra türev sıfıra eşitlenerek kökler bulunur. Daha sonra işaret tablosu yapılarak minimum ve maksimum noktaları belirlenir. Aşağıda türev yardımıyla maksimum ve minimum problemlerinin nasıl çözüldüğüne dair örnekler verilmiştir. 
| | Devamı... 0 yorum

Bileşke Fonksiyonun Türevi ve İspatı

Bileşke fonksiyonların türevi bulunurken eğer fonksiyonun bileşkesi bulunabiliyorsa öncelikle fonksiyonun bileşkesi alınır daha sonra istenen türev bulunur. Bileşke fonksiyonun bulanmayacağı veya daha zor olarak hesaplanacağı durumlarda ise öncelikle birinci fonksiyonun türevinde ikinci fonksiyon bilinmeyen yerine yazılır daha sonra ikinci fonksiyonun da ayrı olarak tekrar türevi alınarak çarpım halinde yanına yazılarak bileşke fonksiyonun türevi bulunur.

Bölüm Türevi ve İspatı

Bazı durumlarda bölüm fonksiyonunu bulmak verilen fonksiyonlar açısından kolay olmayabileceği gibi bölme işlemi ile uğraşmak zaman bakımından da sıkıntılı olacaktır. İki fonksiyonun birbirine bölümünün türevi alınırken çarpım türevine benzer biçimde bölüm türevi kuralı yardımıyla hesaplama yapılabilir. Bölüm türevi alınırken çarpım türevindeki gibi 
(birinci fonksiyonun (pay fonksiyonun) türevi . ikinci fonksiyonun (payda fonksiyonun) aynısı - birinci fonksiyonun aynısı . ikinci fonksiyonun türevi pay kısmına yazılır daha sonra payda olarak da ikinci fonksiyonun [payda fonksiyonun] karesi yazılır. ) bölüm türev kuralı yazılabilir. Bölüm türevinin ispatı da türevin limit tanımından yararlanarak yapılabilir.


| | | Devamı... 1 yorum

Çarpım Türevi ve İspatı

Çarpım türevi alınırken fonksiyonları öncelikle çarpıp daha sonra türev almak daha zor olacağından çarpım türevini bilmek işlemlerde bizlere kolaylık sağlayacaktır. Kolayca formüle edilebilen çarpım türevine göre iki fonksiyon verildiğinde çarpım türevi;
(birinci fonksiyonun türevi . ikinci fonksiyonun aynısı + birinci fonksiyonun aynısı . ikinci fonksiyonun türevi ) şeklinde yazılabilir.Bu kuralın ispatı yapılırken de türevin limit tanımından yararlanarak çarpımın türevini bulabiliriz.
İkiden fazla fonksiyon verilirse kural aynı şekilde geçerli olur. Örneğin üç fonksiyon verilirse sırasıyla aynı kuralı yazabiliriz.


| | | Devamı... 1 yorum

Toplam-Fark Türevi İspatı

Toplam veya fark durumunda bulunan fonksiyonların türevi alınırken fonksiyonların ayrı ayrı türevi alınıp, daha sonra bulunan türev değerleri toplanır veya çıkarılır.

İSPAT: İspatı yaparken; türevin limit tanımından yararlanarak yapalım.


| | | Devamı... 0 yorum

Polinom Fonksiyonların Türevi ve İspatı

Polinom fonksiyonların türevi alınırken bilinmeyenin kuvveti katsayı olarak bilinmeyenin başına geçer ve kuvvet bir sayı azalarak yeniden yazılır. Köklü ifadelerde polinom fonksiyonlara benzetilerek üslü biçime çevrildikten sonra aynı kural yardımıyla türevi alınabilir. Türevin limitle olan tanımından yola çıkarak bu kuralın ispatı yapılabilir. Aşağıdaki ispatı ve örnekleri inceleyiniz.

f(x+h) ifadesini açarken yukarıdaki özdeşlik kullanımı yerine, binom katsayıları kullanırsak farklı bir yoldan da ispatı gösterebiliriz.
| | | | Devamı... 0 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!