Üçgende Ağırlık Merkezi İspatı

Etiketler :
Kenarortay, bir üçgenin herhangi bir kenarını iki eşit parçaya ayıran o kenara karşı köşesinden çizilen doğru parçasıdır. Üçgende kenarortaylar, üçgenin iç bölgesinde bir noktada kesişirler. Bir üçgenin bütün kenarortayların kesişim noktasına, o üçgenin ağırlık merkezi denir. Herhangi iki kenarortay çizildiğinde kesişim noktasından çizilen üçüncü doğru parçası da kenarortay olur. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir. Aşağıdaki ABC üçgeninde [BE] ve [CD] kenarortaylarının kesiştikleri G noktasına, ABC üçgeninin ağırlık merkezi denir.

TEOREM: Ağırlık merkezi; üzerinde olduğu kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde parçalara ayırır. Aşağıdaki şekilde ağırlık merkezinin benzerlik yardımıyla ispatı verilmiştir. 

TEOREM: Bir üçgenin ağırlık merkezinin, üçgenin herhangi bir köşesine olan uzaklığı, bu köşeden geçen kenarortayın uzunluğunun 2/3'üne eşittir. Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı verilmiştir. 


TEOREM: Üçgenin ağırlık merkezi ile orta tabanının kenarortay üzerinde ayırdığı uzunluklar köşeden kenara doğru sırasıyla 3, 1 ve 2 sayılarıyla orantılıdır.  Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı verilmiştir. 


TEOREM: Dik üçgende hipotenüse ait kenarortay uzunluğunun hipotenüs uzunluğunun yarısıdır.  Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı ve çemberde açılar yardımıyla ispatı verilmiştir. (Bkz. Çemberde Açılar)


Kenarortaylar üçgenin alanını altı eşit parçaya bölerler. G ağırlık merkezinden köşelere doğru parçası ile  birleştirildiğinde üçgenin alanı, üç eşit parçaya bölünür. G ağırlık merkezi, kenarların orta noktaları ile birleştirildiğinde, üçgenin alanı üç eşit parçaya bölünür. Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür. 

Üçgenin ağırlık merkezi, köşe koordinatları verilirse koordinat ekseninde daha kolay hesaplanabilir. Ağırlık merkezinin bulunabilmesi için, üçgenin köşe noktalarının koordinatları verilmeli ya da üçgenin köşe koordinatları, analitik geometri işlemlerinden/kurallarından yararlanarak, nokta ve doğru analitiğinin çeşitli uygulamalarıyla bulunabilmelidir.

TEOREM: Üçgenin köşe koordinatlarının apsis ve ordinat değerlerinin kendi aralarında toplamının üçe bölümü, o üçgenin ağırlık merkezinin koordinatlarını verir.

1 yorum:

  1. çok güzel olmuş ellerinize sağlık sayenizde projemi bitirdim

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Niçin matematik Öğreniyoruz19.11.2008 - 0 Yorum Matematiğin amacı; İnsanların doğuştan getirdiği düşünme kabiliyetini geliştirmektir. Bu gelişmeyi sağlamak için, bizlere bir kısım bilgiler kazandırarak karşılaşacağımız olay ve problemlerde inceleme, araştırma ve karşılaştırmalar yaptırarak,…
  • Endülüsten Avrupa'ya Hazin Sesleniş30.03.2016 - 1 Yorum Emevi devleti; tarihin sayfalarında yerini alırken bizlere birçok ibretlik hadiseyi bırakmış olmanın yanında dünya tarihinde de çığır açan izler olarak karşımıza çıkar. Dünya topraklarının pek çoğunu etkilemenin yanında kültürel ve ideolojik…
  • Namazda Lahık Bahsi16.09.2010 - 0 YorumLâhık Hakkında Meseleler     305- Lâhık, namaza imam ile beraber başladığı halde, kendisine uyku ve dalgınlık veya cemaatın fazlalığından dolayı bir eziyet ve bir abdestsizlik hali arız olup da, namazın tamamını veya bir kısmını imam…
  • Farz Orucun Şartları ve Vakti13.03.2010 - 0 Yorum Orucun Şartları 39- Orucun farz oluşuna ve yerine getirilmesinin (edasının) farz oluşu ile sıhhatına dair şartlar vardır. Şöyle ki:     1) Oruçla mükellef olmak için İslâm, akıl ve büluğ şarttır. Onun için bu vasıfları toplamayan…
  • Kenarlarına göre özel dik üçgenler11.10.2020 - 0 YorumDik üçgenlerde en çok kullanılan ve kenar uzunlukları tam sayı olan belirli üçgenler bilinmektedir. Eğer bu üçgenleri bilirseniz pisagor bağıntısını uygulamadan daha pratik olarak pekçok soruyu çözebilirsiniz. 3–4–5 üçgeni: Kenar…
  • Thales Teoremleri ve İspatı22.05.2013 - 0 YorumMiletli Thalēs; y. MÖ 624/623 – MÖ 548/545), Milet, İyonya'dan bir Antik şehir bugün Aydın sınırları içersinde kalmaktadır. Thales, matematikçi, astronom ve aynı zamanda felsefe ile uşraşmıştır. İlk filozoflardan olduğu için felsefenin öncüsü olarak…
  • Üçgen eşitsizliği ve ispatı27.03.2021 - 0 Yorum **Üçgen Eşitsizliği: Bir üçgende herhangi bir kenarın uzunluğu, diğer iki kenarın uzunlukları farkından büyük, toplamından küçüktür. Bir üçgenin çizilebilmesi için olmazsa olmaz şart üçgen eşitsizliğidir.  Üçgen eşitsizliği,…
  • Yeni matematik müfredatının karşılaştırılması07.07.2024 - 0 Yorum9.sınıfta doğrusal fonksiyonlar, 10. sınıfta gerçek sayılarda veya bir alt kümesinde f(x) = x2, f(x) = , f(x) = 1/x şeklinde tanımlı karesel, karekök, rasyonel referans fonksiyonlar ile bunlardan türetilen karesel, karekök ve rasyonel…