Toplam-Fark Türevi İspatı

Toplam veya fark durumunda bulunan fonksiyonların türevi alınırken fonksiyonların ayrı ayrı türevi alınıp, daha sonra bulunan türev değerleri toplanır veya çıkarılır.

İSPAT: İspatı yaparken; türevin limit tanımından yararlanarak yapalım.


| | | Devamı... 0 yorum

Polinom Fonksiyonların Türevi ve İspatı

Polinom fonksiyonların türevi alınırken bilinmeyenin kuvveti katsayı olarak bilinmeyenin başına geçer ve kuvvet bir sayı azalarak yeniden yazılır. Köklü ifadelerde polinom fonksiyonlara benzetilerek üslü biçime çevrildikten sonra aynı kural yardımıyla türevi alınabilir. Türevin limitle olan tanımından yola çıkarak bu kuralın ispatı yapılabilir. Aşağıdaki ispatı ve örnekleri inceleyiniz.

f(x+h) ifadesini açarken yukarıdaki özdeşlik kullanımı yerine, binom katsayıları kullanırsak farklı bir yoldan da ispatı gösterebiliriz.
| | | | Devamı... 0 yorum

Doğrunun Eğiminde Türev

Verilen bir y=mx+n şeklindeki doğrunun eğimi bulunurken türevden yararlanılabilir. Denklemi verilen doğrunun birinci türevi alınırsa doğrunun eğimine ulaşılmış olur. İspatı yapılırken genel türev tanımından yararlanılarak sonuca ulaşılır. Altta doğrusal fonksiyonun eğimini bulurken kullanacağımız türev kuralının ispatı verilmiştir.

Öklid Algoritması

Öklid Algoritması; (Bkz.Euclidin Hayatı) (MÖ.325-MÖ.265) tarafından bulunan kullanışlı bir bölüm işlevidir. EBOB bulma işlemlerinde genellikle asal çarpanlarına ayrılması yönteminden yararlanırız. Lakin bazı durumlarda bu asal çarpanlarına ayırma işlemi sıkıntılı olabilir. Özellikle büyük sayılar verildiğinde EBOB bulma işlemi, asal çarpan yönteminde daha zor hale gelebilir. İki tam sayının en büyük ortak bölenini bulmak için yapılan ardışık bölme işlemine öklit algoritması denir. Ardışık bölme işlemine kalan sıfır oluncaya kadar devam edilir. Sıfırdan önceki en son bölen sayı EBOB u verir. Öklid algoritmasında yapılması gereken temel mantık; ardışık olarak büyük sayıyı küçük sayıya bölerek kalanın 0 olması durumuna kadar devam edilmesidir. Bazı durumlarda kalan 0 olmayabilir bu durumlarda farklı çözüm yolları geliştirilmelidir. 

Alt Küme sayısı formulü ispatı

Bir kümenin bütün elemanları o kümeden farklı olan başka bir kümenin de aynen elemanları oluyorsa bu küme diğer kümenin alt kümesi olur. Alt küme sayısı kümenin eleman sayısı n olmak üzere, 
2 formülü ile hesaplanır. 

Pisagor Teoremi Vektörel İspatı

Pisagor Teoremi, dik üçgenlerde geçerli temel bir bağıntıdır. Esasında trigonometride yer alan cosinüs teoreminin dik üçgen için geçerli halidir. Öklid geometrisinde bir dik üçgenin üç kenarı verildiğinde  dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bilinen en eski matematiksel teoremlerden biridir. Teorem Hint, Çin Mısır ve Mezopotamya Coğrafyasında bilinen ve gündelik yaşamlarında uygulanan bir bağıntı olarak kaynaklarda belirtilse de, yaygın kanaate göre ilk defa Pisagor tarafından yazılı olarak bahsedildiği sanılmaktadır. Pisagor teoreminin bilinen ilk matematiksel ispatı Öklid'in Elementler eserinde yer almıştır.
Pisagor Teoereminin farklı ispatları önceki yazılarımızda verilmiş ve video çözümlerle de bu ispat teknikleri gösterilmiştir. (Bkz. Pisagor teoremi ispatı) Bu yazımızda pisagor teoreminin vektörel yolla nasıl ispat edilebileceğini göstermek istiyoruz. Bunun için önce bir dik üçgeni taşıyıcı kollar olarak üçgenin köşe noktalarından tanımlanmış vektörleri belirliyoruz. Bu belirlediğimiz vektörlerde dört işlem özelliklerinden yararlanarak pisagor teoreminin ispatını aşağıdaki gibi vektörel yolla göstermiş oluruz.

LYS Matematik Soru Dağılımı (2010-2016)

LYS, ciddi bir çalışma ve emek neticesinde başarılı olunabilecek bir sınavdır. Bu nedenle öğrencilerimizin bu sınava hazırlanırken herşeyden önce azim ve kararlılıkla planlı bir çalışma yapmaları gerekmektedir. LYS konularının analizi yapılarak hangi üniteden daha yoğun soru geldiği belirlenmeli ve eksiklik hissedilen konulara buna göre öncelik verilmelidir. Aşağıdaki tablo, LYS Matematik konuları hakkında sizlere bilgi sunması bakımından önemlidir.

Pisagor Teoremi ve İspatı

Pisagor Teoremi, dik üçgenlerde geçerli temel bir bağıntıdır. Esasında trigonometride yer alan cosinüs teoreminin dik üçgen için geçerli halidir. Öklid geometrisinde bir dik üçgenin üç kenarı verildiğinde  dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bilinen en eski matematiksel teoremlerden biridir. Teorem Hint, Çin Mısır ve Mezopotamya Coğrafyasında bilinen ve gündelik yaşamlarında uygulanan bir bağıntı olarak kaynaklarda belirtilse de, yaygın kanaate göre ilk defa Pisagor tarafından yazılı olarak bahsedildiği sanılmaktadır. Pisagor teoreminin bilinen ilk matematiksel ispatı Öklid'in Elementler eserinde yer almıştır.

Pisagor Teoremi İspatı: Pisagor teoreminin çok fazla ispatı yapılmıştır bunlardan en bilineni bir dik üçgenin kenarlarına bitişik olacak şekilde çizilen üç adet karenin alanları arasındaki eşitlikten, dik kenarlara bitişik olan karelerin alanları toplamı hipotenüse ait çizilen karenin alanına eşittir.

12.Sınıf Matematik Müfredatı (2016)

12.sınıf matematik müfredatı malum olduğu üzere kademeli olarak değiştirilmiş ve bu öğretim yılı 2016-2017 itibariyle de uygulamaya koyulmuştur. Matematik ve Geometrinin birleştirilerek tek ders haline getirilmesiyle birlikte konular buna göre düzenlenmiş olup İleri Matematik (6 saatlik) ve Temel Matematik (2 Saatlik) olarak iki farklı ders kategorisi haline getirilmiştir. Ben 12.Sınıf ileri Matematik müfredatı ve gözlemleyerek konuları ve içeriğine dair izlenimlerimi paylaşıyorum.

Aşağıdaki Yazılar İlginizi Çekebilir!!!