Öklid Algoritması

Öklid Algoritması; (Bkz.Euclidin Hayatı) (MÖ.325-MÖ.265) tarafından bulunan kullanışlı bir bölüm işlevidir. EBOB bulma işlemlerinde genellikle asal çarpanlarına ayrılması yönteminden yararlanırız. Lakin bazı durumlarda bu asal çarpanlarına ayırma işlemi sıkıntılı olabilir. Özellikle büyük sayılar verildiğinde EBOB bulma işlemi, asal çarpan yönteminde daha zor hale gelebilir. İki tam sayının en büyük ortak bölenini bulmak için yapılan ardışık bölme işlemine öklit algoritması denir. Ardışık bölme işlemine kalan sıfır oluncaya kadar devam edilir. Sıfırdan önceki en son bölen sayı EBOB u verir. Öklid algoritmasında yapılması gereken temel mantık; ardışık olarak büyük sayıyı küçük sayıya bölerek kalanın 0 olması durumuna kadar devam edilmesidir. Bazı durumlarda kalan 0 olmayabilir bu durumlarda farklı çözüm yolları geliştirilmelidir. 

Alt Küme sayısı formulü ispatı

Bir kümenin bütün elemanları o kümeden farklı olan başka bir kümenin de aynen elemanları oluyorsa bu küme diğer kümenin alt kümesi olur. Alt küme sayısı kümenin eleman sayısı n olmak üzere, 
2 formülü ile hesaplanır. 

Pisagor Teoremi Vektörel İspatı

Pisagor Teoremi, dik üçgenlerde geçerli temel bir bağıntıdır. Esasında trigonometride yer alan cosinüs teoreminin dik üçgen için geçerli halidir. Öklid geometrisinde bir dik üçgenin üç kenarı verildiğinde  dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bilinen en eski matematiksel teoremlerden biridir. Teorem Hint, Çin Mısır ve Mezopotamya Coğrafyasında bilinen ve gündelik yaşamlarında uygulanan bir bağıntı olarak kaynaklarda belirtilse de, yaygın kanaate göre ilk defa Pisagor tarafından yazılı olarak bahsedildiği sanılmaktadır. Pisagor teoreminin bilinen ilk matematiksel ispatı Öklid'in Elementler eserinde yer almıştır.
Pisagor Teoereminin farklı ispatları önceki yazılarımızda verilmiş ve video çözümlerle de bu ispat teknikleri gösterilmiştir. (Bkz. Pisagor teoremi ispatı) Bu yazımızda pisagor teoreminin vektörel yolla nasıl ispat edilebileceğini göstermek istiyoruz. Bunun için önce bir dik üçgeni taşıyıcı kollar olarak üçgenin köşe noktalarından tanımlanmış vektörleri belirliyoruz. Bu belirlediğimiz vektörlerde dört işlem özelliklerinden yararlanarak pisagor teoreminin ispatını aşağıdaki gibi vektörel yolla göstermiş oluruz.

LYS Matematik Soru Dağılımı (2010-2016)

LYS, ciddi bir çalışma ve emek neticesinde başarılı olunabilecek bir sınavdır. Bu nedenle öğrencilerimizin bu sınava hazırlanırken herşeyden önce azim ve kararlılıkla planlı bir çalışma yapmaları gerekmektedir. LYS konularının analizi yapılarak hangi üniteden daha yoğun soru geldiği belirlenmeli ve eksiklik hissedilen konulara buna göre öncelik verilmelidir. Aşağıdaki tablo, LYS Matematik konuları hakkında sizlere bilgi sunması bakımından önemlidir.

Pisagor Teoremi ve İspatı

Pisagor Teoremi, dik üçgenlerde geçerli temel bir bağıntıdır. Esasında trigonometride yer alan cosinüs teoreminin dik üçgen için geçerli halidir. Öklid geometrisinde bir dik üçgenin üç kenarı verildiğinde  dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bilinen en eski matematiksel teoremlerden biridir. Teorem Hint, Çin Mısır ve Mezopotamya Coğrafyasında bilinen ve gündelik yaşamlarında uygulanan bir bağıntı olarak kaynaklarda belirtilse de, yaygın kanaate göre ilk defa Pisagor tarafından yazılı olarak bahsedildiği sanılmaktadır. Pisagor teoreminin bilinen ilk matematiksel ispatı Öklid'in Elementler eserinde yer almıştır.

Pisagor Teoremi İspatı: Pisagor teoreminin çok fazla ispatı yapılmıştır bunlardan en bilineni bir dik üçgenin kenarlarına bitişik olacak şekilde çizilen üç adet karenin alanları arasındaki eşitlikten, dik kenarlara bitişik olan karelerin alanları toplamı hipotenüse ait çizilen karenin alanına eşittir.

12.Sınıf Matematik Müfredatı (2016)

12.sınıf matematik müfredatı malum olduğu üzere kademeli olarak değiştirilmiş ve bu öğretim yılı 2016-2017 itibariyle de uygulamaya koyulmuştur. Matematik ve Geometrinin birleştirilerek tek ders haline getirilmesiyle birlikte konular buna göre düzenlenmiş olup İleri Matematik (6 saatlik) ve Temel Matematik (2 Saatlik) olarak iki farklı ders kategorisi haline getirilmiştir. Ben 12.Sınıf ileri Matematik müfredatı ve gözlemleyerek konuları ve içeriğine dair izlenimlerimi paylaşıyorum.

0/0 neden belirsiz?

“0/0” ifadesi belirsizdir. Bunu özellikle bir soyut ve analitik bakış açısıyla şöyle açıklayabiliriz: Bir cebirsel yapı içerisinde bölme işlemi, paydanın sıfır olmadığı durumlarda tanımlıdır; dolayısıyla herhangi sıfırdan farklı bir reel ya da kompleks sayı için (a/0) ifadesi tanımsızdır. Ancak (0/0) özel bir konuma sahiptir; çünkü bu ifadenin tek bir değeri zorunlu kılan hiçbir cebirsel sayı değeri yoktur. Daha açık bir ifadeyle: Eğer (0/0 = L) gibi bir değere eşit olduğunu varsayarsak, bu durum mecburi olarak içler dışlar çarpımından  (0 = 0*L) eşitliğini gerektirir. 0*L= 0 eşitliği, her L Reel sayısı için sağlanır. Örneğin L yerine 0*4=0,  0*(-7)=0, 0*98=0, 0*√2=0, 0*0=0, 0*(-2/3)=0....vs gibi çeşitli L değerleri için doğru olur. Dolayısıyla bu 0*L=0 veya L*0=0 eşitliğinde L herhangi bir reel sayı olabileceğinden benzersiz bir L değeri atamak imkansız hale gelir. Bu nedenle 0/0 analizde ve özellikle limit kuramında, bir fonksiyonun değersel olarak değil, davranışsal olarak incelenmesi gereken durumları temsil eden bir belirsizlik durumunu gösterir.
Limit hesaplamalarında karşılaşılan (0/0) biçimleri, fonksiyonun çevresel değerlerinden hareketle çözülür; aksi hâlde bu ifade salt aritmetik düzlemde anlamsız kalır. Kısacası 0/0 sonucu hesaplanabilecek belirli bir sayı değildir; bölme gereği tanımlanamaz olduğu için ve hangi değerlere eşit olacağı tam olarak bilinemeyeceğinden 0/0 belirsizdir. Bu belirsizlik, cebirsel tanımlardan ziyade, analitik yöntemlerle ele alınması gereken yapısal bir özellik olarak ortaya çıkar.
0/0 bölme işlemi tanımından da 0/0 belirsizliğini açıklayabiliriz. Bir sayıyı kendisine böldüğümüzde 5/5 gibi sonuç 1 çıkar. 0 da bir sayıdır dolayısıyla 0/0 bölme işleminin de sonucunun 1 çıkması beklenir. Örnek olarak 0'a çok yakın sayılar seçerek bölme işlemlerini yapalım. 0.1/0.1 = 1, 0.001/0.001 = 1 ve 0.000001/0.000001 = 1. Bu örnekler bize “o hâlde 0/0 da 1 olabilir mi?” sorusunu akla getirir. Diyelim ki 0/0 işleminin sonucu 1 olsun. Bu 0/0 işleminin sonucunun böyle olmadığını irdeleyelim. 0 sayısını 0 dan farklı herhangi bir sayıya bölersek sonuç 0 çıkar. Örneğin 0/7 işleminin sonucu 0'dır. Pay 0 iken payda sıfıra çok yakın ama sıfır olmayan sayılar aldığımızda, sonuç yine 0 çıkar; örneğin 0/0.1 = 0, 0/0.001 = 0 ve 0/0.000001 = 0. Bu da bölmeyi paydayı gittikçe 0'a çok yakın sayılar seçtiğimizde  ifade 0/0 = 0 olabilir mi?” sorusunu akla getirir. Ancak önceki durumdan 0/0 sonucu 1 çıkarken şimdi burada 0/0 işleminin sonucu 0 çıkmış olur ki iki farklı yaklaşım iki farklı sonuç verdiği için bu durum bir çelişki oluşturur: Bir yandan sonuç 1 gibi görünürken diğer yandan 0 gibi görünmektedir. Bu bir çelişki olur. İşte bu nedenle 0/0’ın tek bir kesin sonucu yoktur ve bu ifade matematikte belirsiz olarak kabul edilir.
Analiz ve kalkülüs perspektifinden bakıldığında 0/0 ifadesi, yalnızca aritmetik düzeyde tanımsız bir oran olmaktan çıkarak, limit süreçlerinde belirleyici bir yapısal belirsizlik hâline gelir. Kalkülüsün temel kavramlarıyla ilişkilendirdiğimizde bu durum daha net anlaşılır. Limit hesabında herhangi bir sayıya yaklaşırken f(x)/g(x) değeri 0/0 çıktığında, (aynı sayıya yaklaşırken limit alınınca bile) farklı limit değerleri ortaya çıkacağı için fonksiyonlar farklı olduğunda 0/0 belirsiz olarak ifade edilir. Aşağıda iki farklı 0/0 belirsizliği limit örneği verilmiştir:
lim (x²-4)/(x-2) fonksiyonu x=2 için limit alınırsa 0/0 belirsizliği oluşur ve bunun sonucu 4 çıkar. lim (x-2)/(2x-4) fonksiyonu x=2 için limit alınırsa 0/0 belirsizliği oluşur ve bunun sonucu 1/2 çıkar. Aynı sayıya yaklaşırken 0/0 ifadesi en basitinden iki farklı sonuç çıkmıştır. Bu nedenle 0/0 ifadesi limitte bir belirsizlik olarak alınır.
Peki bölme işleminde 0 ile bölmek neden tanımsızdır? Yani A/0 neden tanımsızdır? Bölme işleminin matematikteki tanımı çarpma işleminin tersi üzerine kuruludur. Bir sayıyı başka bir sayıya böldüğümüzde aslında şu ilişkiyi kurarız. "a sayısı b sayısına bölündüğünde c elde ediliyorsa, bu ancak a=b*c eşitliğinin doğru olması halinde mümkündür." Bu tanımın geçerli olabilmesi için bölenin, yani paydanın sıfırdan farkl olması gerekir. Çünkü bölen olarak sıfır alındığında bu tanım çöker. Bir sayının sıfır ile çarpım her zaman sıfırdır dolayısıyla a = 0. c eşitliği ancak a'nin da sıfır olması durumunda sağlanabilir. a sıfır değilse denklem çözümsüz kalır, a sıfırsa da denklem tüm c değerleri için sağlanır, c yerine 0=5*0, 0=7*0, 0=13*0, 0=-4*0 gibi ne yazılırsa yazılsın sonuç doğru olur ve tek bir sonuç elde etmek mümkün olmaz. Bu durumda bölme işlemi, işlemlerin temel özelliği olan "her girdi için tek bir çıktı üretme' ilkesini kaybeder. Bu nedenle bölme işleminde hiçbir zaman payda 0 olamaz. Yani A/0 tanımsızdır.
Cebirsel olarak da A/0 bölme işlemi tanımsızlık sunar. a = b = 1 olsun. Önce 1=1 yani a = b eşitliği yazılsın. Sonra eşitliğin her iki tarafını a (1) ile çarpalım. a² = ab, ardından her iki taraftan da b² ifadesini çıkaralım. Buradan bir özdeşlik elde etmeye çalışalım. a² – b² = ab – b² iki kare farkı özdeşliği elde edilir. Bu da (a + b)(a – b) = b(a – b) şeklinde çarpanlara ayrılır. Buraya kadar her şey doğru olmuştur. Şimdi hatayı yapalım. Eşitliğin her iki tarafını (a – b)’ye yani (1-1=0) ile bölelim. a = b olduğundan a – b = 0’dır. Yani yapılan işlem 0’a bölmedir ve matematikte tanımsızdır. Buna rağmen bölünürse (a + b)(a – b)/(a-b) = b(a – b) /(a-b)  işleminin sonucu a + b = b bulunur ki bu durumda yani 1 + 1 = 1 çıkar ve buradan 2 = 1 gibi saçma bir sonuç elde edilir. Bu sonucun nedeni tamamen 0’a bölme hatasıdır; işlem geçersizdir. Bu işlem hatası bize 0 ile bölmenin tanımsız olacağını gösterir. 

Limitte ∞-∞ belirsizliği

-∞ belirsizliği limit çözümleri yapılırken ∞/∞ belirsizliği (Bkz.Limitte ∞/∞ belirsizliği)  veya 0/0 belirsizliklerine (Bkz.Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde, limit hesabında payda eşitlemesi yoluyla çözüme ulaşılır. Köklü ifadelerde ise verilen limit hesabı yapılırken köklü ifadenin eşleniğiyle çarpımı yoluyla çözüme ulaşılır. -∞ belirsizliği için aşağıda verilen limit formülünün kullanımı da hesaplamalarda kolaylık sağlar.
| | Devamı... 3 yorum

Limitte ∞/∞ Belirsizliği

Limitte polinom fonksiyon olarak verilen ifadelerde x değişkeni için bulunan ∞/∞ belirsizliklerinin çözümünde temel mantık olarak en büyük dereceli terime göre paranteze alma işlemi yapılır.Daha sonra genişletilmiş reel sayılardaki limit (Bkz. Genişletilmiş reel sayılarda limit) kurallarına göre hareket edilerek sonuca ulaşılır. 
| | | Devamı... 4 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!