Toplam ve Fark Formülleri Geometrik İspatları

Etiketler :
"Bu geometrik ispat biçimi, Leonard M. Smiley, Alaska Üniversitesi tarafından kosinüs ve sinüs için trigonometrik toplama ve çıkarma formülleri delillerini göstermek için ortaya konmuştur. Toplam ve fark formüllerinin geometrik ispat biçimleri Matematik Dergisi'nin Aralık,1999 sayısında yer almıştır.

Burada yer alan ispat ve deliller sadece "dar" açılar için geçerlidir, ama tamamen sentetik ve minimal diyagram kullanan Öklid geometrisinde yaygın olarak kullanılır. Buradaki deliller kartezyen koordinatları kullanarak standart analitik ispat için ortak olmayacak şekilde genel bir ispat biçimi sunmaya tamamlayıcı niteliktedir." orjinal metin:(http://math.uaa.alaska.edu/~smiley/trigproofs.html)

Aşağıda toplam ve fark formüllerinin geometrik olarak nasıl ispatlanabileceğini gösteren şekiller çizilmiştir. Açıklamalara göre bu toplam ve fark formülleri verilen dar açılar için geçerli olarak geometrik ispatları yapılmış olur.
 
Şekil 1: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada alfa açısının tanjant değerinden cos(a+b) değeri geometrik olarak gösterilmiş olur.

Şekil 2: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılırsa burada h ile gösterilen kenar uzunluğu yazılırsa, aynı şekilde alttaki dik üçgen üzerinden de  kenarı uzunluğu yazılırsa bu iki uzunluğun birbirleri yerine yazılmasıyla yani x uzunluğunda yer alan h değeri için bulunan ifade yazılıp düzenlenirse; cos(a-b) geometrik olarak gösterilmiş olur.  

Şekil 3: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde, açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılır ve buradaki büyük dik üçgende alfa açısının sin değeri yazılıp içler çarpımı yapılarak gerekli düzenlemeler yapılırsa sin(a+b) değeri geometrik olarak gösterilmiş olur. 
Şekil 4: Bir dik üçgen çizilip buradaki açılar yerleştirildiğinde, açılara göre cos ve sin değerleri kenar uzunlukları olarak yazılır ve buradaki altta yer alan küçük dik üçgende beta açısına göre h değeri yazılıp, aynı şekilde diğer dik üçgende de x kenarının h'ye bağlı olarak değeri yazılırsa ve burada bulunan h değeri x kenarında yerine yazıldığında gerekli düzenlmeler yapılırsa sin(a-b) değeri geometrik olarak gösterilmiş olur.

Cebirsel ispatları daha önceki yazılarımızda gösterilmişti. Sitemizde arama yapılarak kapsamlı izahlara ulaşılabilir.  Kısa bir şekilde formülleri burada tekrarlayacak olursak; (Bkz: http://muallims.blogspot.com/2014/05/toplam-ve-fark-formulleri.html )

Bu formüllerin ispatında açıların dönüşümünden yararlanılabilir. Formüllerin ispatı yapılırken birim çember özellikleri iyi bilinmelidir.
* Cosinüs trigonometrik fonksiyonunda iki açının toplam formülü (Cosinüs) aşağıdaki gibi gösterilebilir.

* Sinüs trigonometrik fonksiyonunda iki açının fark formülü (Sinüs) aşağıdaki gibi gösterilebilir.

* Sinüs trigonometrik fonksiyonunda iki açının toplam formülü (Sinüs) aşağıdaki gibi gösterilebilir.

* Cosinüs trigonometrik fonksiyonunda iki açının fark formülü (Cosinüs) ispatı da detaylı olarak birim çember üzerinden http://muallims.blogspot.com/2014/05/toplam-ve-fark-formulleri.html adresindeki gibi gösterilebilir.

cos (x-y) formülü için farklı bir ispat yöntemini de birim çember üzerinden aynı açıyı gören kiriş uzunlukları yardımıyla analitik olarak ispatlayabiliriz. Bu ispatı yaparken bilmemiz gereken iki nokta arası uzaklık kavramı ve çemberde kiriş özellikleri kavramlarıdır. Aşağıda verilen ispatı inceleyiniz.

1 yorum:

  1. Hocam gerçekten güzel bir araştırma olmuş.Ellerinize sağlık...

    YanıtlaSil

Popüler Yayınlar

Sosyal Paylaşım

Icon Icon Icon Icon

Lütfen yazılarımızla ilgili yorum yapmaktan çekinmeyin. Kırık linkleri ve hatalı içerikleri mutlaka bize ilgili sayfa altında yorum yaparak bildiriniz. Blog sayfalarımızda ilginizi çekebilecek diğer yazılar için blog arşivimizi kullanabilirsiniz.

Son Yorumlar

Yararlı Linkler