Toplam-Fark Formülleri ve İspatları

Etiketler :
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu formüllerin iyi bilinmesi yarım açı, dönüşüm ve ters dönüşüm formüllerinin çıkarılması için gerekli olacaktır. Aşağıda sinüs,cosinüs,tanjant ve kotanjant fonksiyonlarının toplam ve fark formülleri verilmiş ve bunların nasıl ortaya çıktığı ispatlanarak gösterilmiştir. Kotanjant formülünün ispatı ayrıca gösterilmemiştir. Bu formülün ispatı için tanjantın ispatı bulunduktan sonra çarpma işlemine göre tersi alındığında kotanjantın değeri bulunmuş olur. 

cos fonksiyonun toplam ve fark eşitliği bulunduktan sonra trigonometrik fonksiyonların birbirine dönüşümleri kullanılarak sinüs fonksiyonun da toplam ve fark formülü elde edilir. Bu iki formülden yararlanarak da tanjant fonksiyonu ile cotanjant fonksiyonlarının toplam ve fark formülleri bulunur.  Tanjatın toplam formülü bulunurken finüs ve cosinüs fonksiyonlarının toplam fark formülleri yazıldıktan sonra birbirine oranlanır. sin(a+ b) ve cos (a+b) ifadelerinin eşiti yerlerine yazıldıktan sonra pay ve payda cosa.cosb ile bölünür. 


Başka bir ispat biçimi olarak aşağıdaki dik üçgenden, eş uzunluk parçaları kullanılarak toplam fark formülleri elde edilebilir.
Öğrencilerimizin sınavlara hazırlanırken sinüs,cosinüs ve özellikle tanjantın toplam ve fark formüllerini bilmesi yararlı olacaktır. Bu formüllerden sadece tanjantı ezberlemeniz durumunda bile pek çok soruyu çözebilirsiniz. Tanjantın formülünden bulduğunuz toplam veya fark açısından yola çıkarak tanjanta uygun bir üçgen çizerseniz trigonometrik oranlardan biri belli iken diğerinin bulunmasından yola çıkarak sizden istenen trigonometrik fonksiyonun değerini bu üçgen yardımıyla bulabilirsiniz.

Farklı bir yoldan,  bu formüllerin birim çember yardımıyla da ispatı mümkündür. Örnek olarak cosinüs fark formülünü birim çemberden şu şekilde ispatlayabiliriz.


Toplam ve fark formüllerinin ispatları cebirsel olarak gösterilebildiği gibi, geometrik olarak da gösterilebilir.Konu ile ilgili diğer yazımız için; (Bkz. Toplam/Fark Formüllerinin Geometrik İspatı) adresini inceleyebilirsiniz. 

Aşağıda yer alan örnekleri inceleyerek, formüllerin nasıl kullanıldığına dair bilgi sahibi olabilirsiniz.




8 yorum:

  1. hocam cos(a-b) ve cos(a+b) nin ispatını ayrıntılı ve şekilli olarak bana gönderebilirseniz çok sevinirim

    YanıtlaSil
    Yanıtlar
    1. sevgili okurumuz; bu yazımızda trigonometrik fonksiyonların toplam ve fark formüllerinin cebirsel ispatları yapılmıştır. bu formüllerden sin ve cos fonksiyonlarının toplam ve fark formüllerinin geometrik gösterimleri için http://muallims.blogspot.com.tr/2014/05/toplam-ve-fark-formulleri-geometrik.html yazımıza bakmanız rica olunur.

      Sil
  2. Hocam Başka ispatıda var bunun

    YanıtlaSil
    Yanıtlar
    1. elbette başka şekillerde de ispatlama yapabilirsiniz. Eğer ispatınızı bizimle paylaşırsanız ismizinle yayınlayabiliriz.iyi çalışmalar

      Sil
  3. Hocam tan bölümünde neden cosx.cosy ye bölüyoruz a b x y fark etmez

    YanıtlaSil
    Yanıtlar
    1. Bölümden sonra aynı cins açıları elde ederek tanjant fonksiyonu yazılabilir.

      Sil
  4. hocam cosa.cosb bölme sebebimiz ne

    YanıtlaSil
    Yanıtlar
    1. Bölüm yapılıp sadeleştirildiğinde tan değerleri ortaya çıkar. tan(a+b) ifadesinin karşılığı tanjant a ve b cinsinden bulunmuş olur

      Sil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Bir Gezi Rotası: Konya-Ereğli-Karaman03.07.2019 - 0 Yorum Okulların tatil olması ile birlikte yoğun geçen dönemin ardından bir gezi planı yapıp , yakın çevreyi keşfetmek güzel bir fırsat oldu. Bunun için Konya-Karaman güzergahını, kendime rota olarak belirledim. Kısa mesafeli ama bir o kadar da yorucu bir…
  • Su Kasidesi22.07.2015 - 0 Yorum Saçma ey göz eşkden gönlümdeki odlara su Kim bu denlü dutuşan odlara kılmaz çâre su (Ey göz! Gönlümdeki (içimdeki) ateşlere göz yaşımdan su saçma ki, bu kadar (çok) tutuşan ateşlere su fayda vermez.) Âb-gûndur günbed-i devvâr rengi…
  • Sağlıklı ve Temiz Tuvalet Alışkanlığı18.10.2012 - 0 YorumSağlıklı bir yaşamın en önemli unsurlarından birisi iyi bir tuvalet alışkanlığıdır. İnsanın idrarında ve özellikle dışkının her milimetre küpünde milyonlarca bakteri bulunur. Bu mikroplar, herhangi bir yolla tekrar vücudumuzun iç ortamına…
  • Oyun mu, Teori mi?23.04.2009 - 0 YorumAkademik araştırmalarda kullanım alanları yaygınlaştıkça önemi anlaşılan bu araç, 1990’lardan itibaren Amerika’da yaygın olarak uygulanmaya başlandı. Özellikle ekonomi alanında ihale düzenlemelerinden rekabet analizlerine kadar geniş bir uygulama…
  • Öğrencilerimizden Anlamlı Karikatürler30.04.2016 - 0 Yorum Çalıştığım lisedeki öğrencilerimizin; birlik, beraberlik ve terör konularında çizdiği onlarca karikatür ve resim fotoğrafları arasından seçtiğim birbirinden anlamlı üç karikatürü istifadenize sunuyorum. Gerçekten de gençliğimizin boş yetişmediğinin…
  • Matematik korkusundan nasıl kurtulabilirsiniz?05.02.2009 - 1 YorumDeğişen ve hızla gelişen dünyamızda, genellikle öğrencilere sevilmeyen bir disiplin olarak görülen Matematiğin önemi ve yeri giderek artmaktadır.Matematiğin sözlük anlamı; "biçim, sayı ve çoklukların yapılarını, özelliklerini ve aralarındaki…
  • Kaldırımlar14.04.2010 - 0 YorumI Sokaktayım, kimsesiz bir sokak ortasında; Yürüyorum, arkama bakmadan yürüyorum. Yolumun karanlığa saplanan noktasında, Sanki beni bekleyen bir hayal görüyorum. Kara gökler kül rengi bulutlarla kapanık; Evlerin…
  • Augustin Louis Cauchy03.02.2010 - 0 Yorumİlk büyük Fransız matematikçisi olan Cauchy, 1789’da Paris’te doğdu. 1814 yılında, karmaşık fonksiyonlar kuramını geliştirdi. Bugün, Cauchy teoremi adıyla bilinen ünlü teoremi ifade ederek ispatladı. Bu alanda integraller ve bunların hesaplama…