ÖSYM Çokgenler-Dörtgenler çıkmış sorular

ÖSYM Çokgenler-Dörtgenler çıkmış sorular: Bu PDF soyasında çokgenler, dörtgenler ve özel dörtgenler  ünitesinden mevcut müfredatta bulunan kazanımlarla ilgili sorular yer almaktadır. 2013 yılından öncesi sınavlarda çıkmış sorular bu pdf dosyasında yoktur.

ÖSYM sınav sorularına ve güncel bilgilere ulaşmak için ÖSYM resmi sitesini kullanınız.
Sınav Sorularına ÖSYM sitesinden ulaşabilirsiniz.

Çokgenler Ünitesi Konu Başlıkları

Düzlem üzerinde dört farklı noktanın ardışık sırayla birleştirilmesiyle oluşan kapalı geometrik şekle dörtgen ismi verilir. Dörtgenler çokgenlerin özel bir çeşidi olduğu için farklı başlıklar altında özellikleri incelenebilir. Çokgenler ünitesinde yer alan aşağıdaki konu başlıkları ile ilgili olarak hazırlanmış konu anlatımı ve önemli teoremlerin ispatlarına, örnek soru çözümlerine ilgili bağlantının/yazının üzerine tıklayarak ulaşabilirsiniz. 

Çokgenler ve Genel Özellikleri

Dörtgenlerde Açı Özellikleri ve ispatları

Dörtgenlerde Uzunluk Teoremleri ve İspatları

Dörtgenlerde Alan Bağıntıları

**Dörtgenlerin vektörel alan formülleri


Yamukta Özellikler ve İspatları

Yamukta alan bağıntıları

Paralelkenar ve Özellikleri

Paralelkenarda Alan Hesabı

Eşkenar Dörtgen ve Özellikleri

Dikdörtgen ve Özellikleri

Karenin Özellikleri

Deltoidin Özellikleri


Teğetler Dörtgeni

Kirişler Dörtgeni


Katı Cisimlerin Alan ve Hacim Formülleri

Piramitin Alanı ve Hacmi

Prizma ve Piramitlerde Euler Bağıntısı

**Çok Yüzlüler ve Çeşitleri

**Çok Yüzlü cisimler için "Euler Formulü"

**Platon Katı Cisimleri

Çokgenlerle Fraktal Oluşturma

Çokgenlerde Kaplama Teknikleri

Çokgenlerle Desen-Kaplama Oluşturma

**Geometrik Cisimlerin Birim Küp Kodlaması

Geometrik Cisimlerde Simetri


(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 

Deltoid ve Özellikleri

Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanlarda belli bir denge olduğu için, daha kolay uçabilmektedir. Kendi yaptıklarımızın da sağlıklı bir şekilde uçabilmesi için belli özellikleri olmalıdır. İşte çocukluğumuzun güzel hatıralarında saklanmış, gökyüzünde sıklıkla karşılaştığımız bu geometrik şeklin adı deltoid'tir.  

| | | | | Devamı... 0 yorum

Karenin Özellikleri

Kare, matematikteki en temel geometrik şekillerden birisidir. Pek çok yerde kullanımı mevcuttur. Özellikle seramik/fayans döşeme ve kaplamalarında, mobilya tasarımlarında sıklıkla kare tercih edilir. Kenar uzunlukları eşit olan dikdörtgene kare (murabba) denir. 

Kare, bir düzgün çokgen örneğidir.  Kare esasında özel bir dikdörtgen çeşididir. Aynı zamanda eşkenar dörtgendir. Eşkenar dörtgende ve dikdörtgende yer alan tüm özellikleri sağlar. Bütün iç ve dış açıları 90 derecedir. iç açıları ve dış açıları ölçüleri toplamı 360 derece olup tamamı 90 derecedir. Köşegenleri dikdörtgendeki gibi birbirine eşittir ve birbirini ortalar. Köşegenlerin kesim noktası, karenin ağırlık merkezi (denge noktası) olur.

| | | | | | Devamı... 0 yorum

Dikdörtgen ve Özellikleri

Tüm açılarının ölçüsü, 90 derece olan paralelkenara dikdörtgen (mustatil) adı verilir. Paralelkenarın bütün özelliklerini taşır. Karşılıklı kenar uzunlukları birbirine eşittir. Her dikdörtgen, aynı zamanda bir paralelkenardır. Bu ifadenin tersi doğru olmaz. Yani her paralelkenar, her zaman bir dikdörtgen olmaz. Kare şekli de özel bir dikdörtgen formatıdır.

Dörtgenlerin Özelliklerinin Sınıflandırılması

Dörtgenlerin ortak özellikleri olduğu gibi birbirinden farklı özellikleri de mevcuttur. Bütün bu özellikleri bir tabloda birlikte göstermek dörtgenlerin sınıflandırılması açısından bizlere kolaylık sağlayacaktır. 
| | | Devamı... 0 yorum

Çokgenler ve genel özellikleri

Tanım: n ≥ 3 ve n bir doğal sayı (N) olmak üzere, düzlemde sadece A 1 , A2, A3, ... , An noktalarında kesişen ve ardışık herhangi üç noktası doğrusal olmayan [A1 , A2], [A2, A3], ... , [An – 1 , An], [An, A1 ] doğru parçalarının birleşim kümesinin oluşturduğu kapalı geometrik şekle "çokgen" denir. [A1 , A2], [A2, A3], ... , [An – 1 , An], [An, A1 ] doğru parçalarına çokgenin kenarları; A1 , A2, A3, ... , An noktalarına da çokgenin köşeleri denir.

Bir çokgenin iç bölgesinde bulunan herhangi iki nokta birleştirildiğinde oluşan doğru parçası, çokgenin iç bölgesinde kalıyor ise bu tip çokgenlere "dışbükey çokgen" (konveks) denir. Bir çokgenin iç bölgesinde bulunan herhangi iki nokta birleştirildiğinde oluşan doğru parçası, çokgenin iç bölgesinde tamamıyla kalmıyorsa bu tip çokgenlere de "içbükey çokgen" (konkav) denir. 

Dörtgende Uzunluk Teoremleri ve İspatı

Bir dörtgende köşegenler birbirini dik olarak keser ise dörtgenin karşılıklı kenarlarının kareleri toplamı birbirine eşit olur. Bütün konveks dörtgenlerde bu genel özelliktir. Kuralın geçerli olması için köşegenlerin birbirini dik olarak kesmesi gerekir. Konkav dörtgende de aynı bağıntı geçerlidir. İspatı yapılırken dörtgenin iç bölgesinde oluşan üçgenlerde ayrı ayrı pisagor teoreminden yararlanılır.

** Bu şekildeki bir dörtgenin alanı da köşegenleri çarpımının yarısı kadardır. Köşegenler dik kesiştiği için Üçgende sinüs alan formülünden sin 90=1 olduğundan iki parça halinde üçgen toplamı olarak  verilen dörtgen düşünülürse; köşegenleri dik kesişen dörtgenin alanı köşegenler çarpımının yarsı olur.

Çokgenlerde Kaplama Teknikleri

Verilen  kaplama  örneğindeki  karesel  ve  düzgün  altıgensel  bölgelerin komşu kenarları silinir. Bölgeler boyanarak  farklı  bir  kaplama  oluşturulur. (Birleştirme tekniği)Verilen kaplama örneğindeki karesel ve düzgün altıgensel bölgelerin köşegenleri çizilerek yeni bölgeler oluşturulur. Oluşan yeni bölgeler boyanarak farklı bir kaplama oluşturulur. (Bölme tekniği)Verilen kaplama örneğindeki komşu çokgensel bölgelerin merkezleri birleştirilerek yeni bölgeler oluşturulur. Oluşan yeni bölgeler boyanarak farklı bir kaplama oluşturulur.  (Dual tekniği)

Çokgenlerle Fraktal Oluşturma

Fraktal da amaç herhangi bir yerinden alınan parça ile büyük parçanın birbirine benzerlik göstermesidir. Fraktal oluşturma basamaklarına bu şekilde istediğiniz gibidevam ediniz. Çizdiğiniz fraktal sonsuza kadar aynı biçimde devam edecek bir yapıya bürünmüş olursa fraktal özelliği kazanmış olur.
Kareli kâğıda yukarıdaki fraktal görüntülerini çiziniz. (Büyük karenin  bir kenarının uzunluğunu istediğiniz kadar birim alınız.Örneğin 12 cm)
1. şekil için kareleri şekildeki gibi bir kenarın tam orta nokta sına gelecek biçimde birleştiriniz. Her seferinde karelerin küçüldüğünü göreceksiniz.
Her bir karenin köşelerine iki kare gelecek şekilde fraktal oluşturmaya devam ediniz.Karelerin bir kenarının her seferinde küçüldüğünü göreceksiniz. Karenin kenar uzunluklarını hesaplayınız. Bunun için özel üçgenden yararlanın. 12 cm kareden sonraki karenin bir kenarı için önce tam orta noktası 6 cm sonra burada oluşacak ikizkenar dik üçgen yardımıyla da diğer karenin bir kenar uzunluğu pisagor bağıntısından bulunur. (45-45-90 özel üçgeni) Bu şekilde sonsuza kadar devam edebilecek bir fraktal oluşturmuş olursunuz. İsterseniz araları boyayarak farklı bir desen oluşturabilirsiniz.
2. ve 3 şekillerde kareyi tam orta noktasından eşit karelere bölme ve diğerinde de karenin içine her seferinde bir önceki karenin kernar uzunluğunun yarısı kadar uzunlukta bir karenin tam merkeze gelecek şekilde çizilmesi ile fraktal oluşturulur.

Çokgenlerle Desen-Kaplama Oluşturma

Gündelik hayatta sıklıkla karşımıza çıkan motif örneklerinde çokgenler yardımıyla oluşturulmuş kaplama modelleri kullanılmaktadır. Kaplama modelleri yapılırken belli bir çokgenden yararlanılabileceği gibi farklı çokgenlerin bir uyumu içerisinde de kaplama yapılabilir. burada dikkat edilecek husus kaplama modeli yapılırken motifin içerisinde alınan herhangi bir köşedeki açıların ölçüleri toplamı 360 derece olmalıdır. yani bir noktada yer alan çokgenlerin iç açıları ölçüleri toplamına göre motifler düzgün bir sıralamayla sıralanmalıdır.
Örneğin bir motifte düzgün altıgen, kare ve eşkenar üçgen kullanılacaksa bunların iç açıları sırasıyla 120,90 ve 60 derece olduğuna göre sadece düzgün altıgenler yardımıyla 3 tane altıgeni bir köşede birleştirerek arı peteği gibi veya karelerden oluşmak üzere bir köşede dört kareyi birleştirerek veya bir köşede 6 adet eşkenar üçgeni birleştirerek veya bir köşede iki altıgen (120*2=240) ve 2 eşkenar üçgen (60*2=120) gibi buna benzer farklı şekilleri uygun biçimde birleştirerek kaplama yapılmalıdır. Kaplamada önemli olan bir husus da motifte hiçbir şekilde boşluk kalmamasıdır.

Bir diğer kaplama oluşturma yöntemi de eksenler yardımıyla doğru parçalarının arasında kalan kısımların kaplanarak oluşturulmasıdır. bu şekilde yapılan kaplamada öncelikle eksenler çizilir daha sonra bu eksenlerde eşit aralıklı noktalar belirlenir ve bu noktalar birbiriyle eşlenecek biçimde doğru parçaları ile birleştirilir sonra bu doğru parçalarının aralarında kalan parçalar boyanır veya uygun parçalarla kaplanır. Bu şekilde oluşturulan yöntemde dikkat edilecek husus nokta eşlemelerinin azami dikkatle yapılmasıdır.
Aşağıda farklı çokgen tipleriyle oluşturulmuş çeşitli kaplama ve desen modelleri gösterilmiştir. Dikkatle inceleyip sizlerde kendinize göre yeni motifleri öteleme ve yansıma dönüşümleri ile oluşturabilirsiniz.






Çok Yüzlüler ve Çeşitleri


Yüzey parçaları ile sınırlanan kapalı uzay parçasına çokyüzeyli katı cisim; çokyüzeyli katı cismin sınırına da çokyüzeyli denir. Her çokyüzlü aynı zamanda çokyüzeylidir. Bir çokyüzeyliyi oluşturan her bir yüzey parçasına bu çokyüzeylinin yüzü, herhangi iki yüzün ara kesitine bu çokyüzeylinin ayrıtı, ikiden fazla yüzün ara kesitine bu çokyüzeylinin tepe noktası denir.

Çokyüzeyliler, yüzleri düzlemsel bölge olanlar ve olmayanlar olarak iki şekilde sınıflandırılır.

Çokyüzeyli katı cismin bütün yüzeyleri düzlemsel ve çokgensel bölge ise çokyüzlü katı cisim, eğer çokyüzeylinin bütün yüzey parçaları düzlemsel ve çokgensel bölge ise çokyüzlü denir.

Tekyüzey parçası ile sınırlanan kapalı uzay parçasına tekyüzeyli katı cisim, tekyüzeyli katı cismin sınırına da tekyüzeyli denir.

Öteleme, Süsleme ve Örüntü Oluşturma

Öteleme nedir?
Bir nesnenin bir yerden başka bir yere belirli bir doğrultu ve yönde (sağ, sol, yukarı, aşağı) yaptığı kayma hareketi ötelemedir. Öteleme hareketi sonunda nesnenin geldiği yer, görüntüsüdür. Ötelemede şeklin duruşu, biçimi ve boyutları aynı kalır. Örneğin şeklimiz 3 birim yukarı, 4 birim sağa kaydırılacak ama yönü değişmeyecek sadece yer değiştirmiş olacaktır.
Örüntü nedir?
Belirli bir kurala göre art arda gelen eş veya benzer şekillerin oluşturduğu topluluğa örüntü denir. Farklı şekillerin biraraya gelerek oluşturdukları yeni şekildir. Örneğin, kağıttan birbirine eş bir sürü üçgen şeklini kestiniz. Bunlarla bulmaca gibi balık, kuş, ev, halı, kare, dikdörtgen gibi farklı desenlerde yeni şekiller meydana getirebilirsiniz. İşte bu oluşturduğunuz yeni şekillere birbiri ile anlamlı bir kural oluşturduğu takdirde örüntü adı verilir. Yalnız buradaki kestiğiniz üçgenlerin birbirine eş ve benzer olması gerekir. 

Süsleme nedir?
Bir düzlemin boşluk kalmadan ve şekiller üst üste gelmeden örüntü oluşturacak şekilde döşenmesidir. Süsleme yapılırken düzgün olan ya da düzgün olmayan çokgenler kullanılabilir. Çokgenler arasında boşluk kalmamalıdır. Üçgenle, kareyle, dikdörtgenle, düzgün altıgenle, düzgün sekizgenle süsleme yapılabilir. Arada boşluklar kalan cisimlerle süsleme motifleri oluşturulamaz. Şekiller öteleme hareketi ile döşenirse ötelemeli süsleme yapılmış olur. Örneğin okuldaki fayansların dizilişi, halı desenleri gibi.
Süsleme yapılabilmesi için, her bir köşede oluşan açıların ölçülerinin toplamı 360 derece olmalıdır.

Süslemenin Kodu Nasıl Bulunur?
Bir süslemede, her köşedeki düzgün çokgensel bölgelerin kenar sayıları süslemenin kodunu verir. Burada verilen süslemeli şeklin ortadaki köşelerinden birini belirleriz ve bu köşe etrafında oluşan şekillerin kenar sayısı ve kaç tane olduğuna göre kod yazarız.

Karelerden oluşan bir süslemede kod: 4,4,4,4 
(köşe etrafında 4 kenarlı 4 tane kare vardır anlamına gelir.)

Eşkenar üçgenlerden oluşan bir süslemede kod:3,3,3,3,3,3 
(köşe etrafında 3 kenarlı 6 tane üçgen vardır anlamına gelir.)

Düzgün altıgenlerden oluşan bir süslemede kod: 6,6,6 
(köşe etrafında 6 kenarlı 3 tane altıgen vardır anlamına gelir.)

Farklı çokgenler bir arada kullanılarak da süslemeler elde edilebilir. Bu durumda kullanılan çokgenlere göre süsleme kodu değişir. Hangi çokgenler kullanılmış ise bunların kenar sayılarına göre süsleme kodu sırayla yazılır.

Aşağıda öteleme/süsleme ve örüntü ile ilgili konuyu pekiştirmenizi sağlayacak testler verilmiştir.İnceleyebilirsiniz.


 

Çok Yüzlü cisimler için "Euler Formulü"

Üç boyutlu nesnelere katı cisim denir. Bir katı cisim herhangi bir ölçüye veya şekle sahip olabilir. Ancak çokyüzlüler; küreler, silindirler ve koniler gibi birçok katı cismin kendisine has özellikleri vardır.Her biri yüz adını alan düzlemsel çokgenlerle sınırlanan katı cisimlere çokyüzlüler denir. Yüzlerin birbiriyle kesiştiği doğrular ayrıt olarak adlandırılır. 


Üç veya daha fazla yüzün kesiştiği noktaya ise köşe denir. Bir çokyüzlüde, iki yüzün kesiştiği yerde oluşan açıya iki düzlemli açı denir.Bütün iki düzlemli açıları 180° den küçük olan çokyüzlüye dışbükey çokyüzlü denir; örnek olarak küp verilebilir. iki düzlemli açılardan en az biri 180° den büyük olan çokyüzlüye içbükey çokyüzlü denir. Bu da en az bir köşe noktasının katının içine doğru olduğu anlamına gelir. Bütün yüzleri özdeş düzgün çokgenlerden oluşan çokyüzlüye düzgün çokyüzlü denir. Köşelerdeki açılar eşittir. Beş tane düzgün çokyüzlü vardır. Bunlar, Yunan filozof Platon’un adıyla anılır ve Platonik cisimler olarak adlandırılır.
Bir düzgün dörtyüzlü her biri eşkenar üçgensel bölge olan dört tane yüze sahiptir. Bir küpün altı tane karesel bölge yüzü vardır.Bir düzgün sekizyüzlü, her biri eşkenar üçgensel bölge olan sekiz tane yüze sahiptir. Bir düzgün on iki yüzlü, her biri düzgün beşgensel bölge olan on iki tane yüze sahiptir. Bir düzgün yirmi yüzlü, her biri eşkenar üçgensel bölge olan yirmi tane yüze sahiptir. Yüzleri çeşitli düzgün çokgensel bölgelerden oluşan çokyüzlüye yarı düzgün çokyüzlü denir. Bir otuz iki yüzlü, 20 üç- gensel bölge ve 12 beşgensel bölge olmak üzere toplam 32 yüzden oluşan bir yarı düzgün çokyüzlüdür.

Bir çok yüzlü için;köşe sayısı ile yüzey sayısının toplamından kenar(ayrıt) sayısı çıkarıldığında daima sabir bir değer olan 2 sayısı elde edilir. Bu formüle Euler çokyüzeyli formülü denir. Bu formül ünlü matematikçi Leonhard Euler (1707-1783) tarafından bulunmuştur.
Köşe Sayısı+Yüzey Sayısı-Ayrıt Sayısı=2

Aşağıdaki Yazılar İlginizi Çekebilir!!!