Net Fikir » trigonometrik fonksiyonlar » Trigonometri Hesabı (Cos36)
Trigonometri Hesabı (Cos36)
Etiketler :
denklem
denklem çözümü
ispat
matematik
teorem ispatları
trigonometri cetveli
trigonometrik fonksiyonlar
Cos36 değerini tablo kullanmadan sadece geometrik veriler yardımıyla göstermeye çalışalım. Bulduğumuz değer trigonometrik değerler tablosundan da görüleceği üzere yaklaşık olarak aynı değerde olacaktır.
Bu hesaplama yapılırken bir ikizkenar üçgenden yararlanarak üçgenin taban açılarını 72 derece seçtiğimiz zaman yukarıdaki bir şekil ortaya çıkar. Taban açılarının birinden karşı kenara bir açıortay çizersek ikinci bir ikizkenar üçgen elde etmiş oluruz. Daha sonra bu iki ikizkenar üçgenin benzerliğinden elde ettiğimiz ikinci dereceden denklemin çözüm kümesini kök bulma formülü ile bulduğumuz zaman cos 36 değerini yaklaşık değerini hesaplamış oluruz. cos36=0,8090 bu değer trgionometrik tabloda da aynı şekilde görülmektedir. Bunu diğer açılara da aynı şekilde uygulama şansımız vardır. Böylece trigonometrik değerler tablosundaki sayıların nasıl ortaya çıktığı konusunda bir bilgi elde etmiş oluruz.
Takip et: @kpancar |
|
''Trigonometri Hesabı (Cos36)'' Bu Blog yazısı;
Nisan 08, 2013 tarihinde denklem, denklem çözümü, ispat, matematik, teorem ispatları, trigonometri cetveli, trigonometrik fonksiyonlar kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca 3 yorumlu bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(214)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanl...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Geçmişten günümüze kadar matematikte emek sarfetmiş bilim insanlarından bazılarını, bir tarih şeridi halinde görmek istersek, aşağıdaki gib...
Super aciklamissiniz tesekkurler
YanıtlaSilsin 16 yı nasıl bulcaz örneğin denedim bulamadım, aynı yöntemle çıkmıyor
YanıtlaSilbir elinize sağlık da benden
YanıtlaSil