Türev ve İntegral Konuları

Limit, türev ve integral konularıyla alakalı olarak blog sayfamızda yer alan konu başlıkları aşağıdaki gibidir. Konu anlatımı ve örnek sorularla ilgili ünite açıklanmaya çalışılmıştır. İstifadenize sunulan bu çalışmayı hayır dualarınızla destekleyiniz. Kolaylıklar dilerim.


LİMİT ve SÜREKLİLİK

Bir fonksiyonun bir noktada sürekliliği

Limitte ∞-∞ belirsizliği

Limitte ∞/∞ belirsizliği

Limitte 0/0 Belirsizliği

Trigonometrik fonksiyonların limitleri

Genişletilmiş reel sayılar kümesinde limit 

Sinx/x limiti ve ispatı 

Limitin tarihçesi 

 

TÜREV ve UYGULAMALARI

Türevle grafik çizimi 

Düşey ve yatay asimptot

Maksimum ve minimum problemleri

Bileşke fonksiyonun türevi ve ispatı

Bölüm türevi ve ispatı

Çarpım türevi ve ispatı 

Toplam ve fark türevi ispatı 

Polinom fonksiyonların türevi ve ispatı 

Doğrunun eğiminde türev 

L-Hospital Kuralı 

Ters trigonometrik fonksiyonların türevi 

Tanx ve Cotx fonksyionlarının türevi ve ispatı 

Sinx ve Cosx fonksiyonlarının türevleri ve ispatı 

Logaritma fonksiyonun türevi 

Artan ve azalan fonksiyonlar 

 

İNTEGRAL

İntegralle hacim hesabı

Daire yardımıyla integralde alan hesabı 

İki eğri arasında kalan alan 

Belirli integralle alan hesabı 

Belirli integral 

İntegralde basit kesirlere ayırma yöntemi

Kısmi integrasyon yöntemi

Logaritma ve üstel fonksiyon integrali

Ters trigonometrik fonksiyonların integrali

Trigonometrik fonksiyonların integrali

İntegralde değişken değiştirme yöntemi

Belirsiz integral alma kuralları

Belirsiz integral

Diferansiyel kavramı

Riemann toplamı

0/0 neden belirsiz?

“0/0” ifadesi belirsizdir. Bunu özellikle bir soyut ve analitik bakış açısıyla şöyle açıklayabiliriz: Bir cebirsel yapı içerisinde bölme işlemi, paydanın sıfır olmadığı durumlarda tanımlıdır; dolayısıyla herhangi sıfırdan farklı bir reel ya da kompleks sayı için (a/0) ifadesi tanımsızdır. Ancak (0/0) özel bir konuma sahiptir; çünkü bu ifadenin tek bir değeri zorunlu kılan hiçbir cebirsel sayı değeri yoktur. Daha açık bir ifadeyle: Eğer (0/0 = L) gibi bir değere eşit olduğunu varsayarsak, bu durum mecburi olarak içler dışlar çarpımından  (0 = 0*L) eşitliğini gerektirir. 0*L= 0 eşitliği, her L Reel sayısı için sağlanır. Örneğin L yerine 0*4=0,  0*(-7)=0, 0*98=0, 0*√2=0, 0*0=0, 0*(-2/3)=0....vs gibi çeşitli L değerleri için doğru olur. Dolayısıyla bu 0*L=0 veya L*0=0 eşitliğinde L herhangi bir reel sayı olabileceğinden benzersiz bir L değeri atamak imkansız hale gelir. Bu nedenle 0/0 analizde ve özellikle limit kuramında, bir fonksiyonun değersel olarak değil, davranışsal olarak incelenmesi gereken durumları temsil eden bir belirsizlik durumunu gösterir.
Limit hesaplamalarında karşılaşılan (0/0) biçimleri, fonksiyonun çevresel değerlerinden hareketle çözülür; aksi hâlde bu ifade salt aritmetik düzlemde anlamsız kalır. Kısacası 0/0 sonucu hesaplanabilecek belirli bir sayı değildir; bölme gereği tanımlanamaz olduğu için ve hangi değerlere eşit olacağı tam olarak bilinemeyeceğinden 0/0 belirsizdir. Bu belirsizlik, cebirsel tanımlardan ziyade, analitik yöntemlerle ele alınması gereken yapısal bir özellik olarak ortaya çıkar.
0/0 bölme işlemi tanımından da 0/0 belirsizliğini açıklayabiliriz. Bir sayıyı kendisine böldüğümüzde 5/5 gibi sonuç 1 çıkar. 0 da bir sayıdır dolayısıyla 0/0 bölme işleminin de sonucunun 1 çıkması beklenir. Örnek olarak 0'a çok yakın sayılar seçerek bölme işlemlerini yapalım. 0.1/0.1 = 1, 0.001/0.001 = 1 ve 0.000001/0.000001 = 1. Bu örnekler bize “o hâlde 0/0 da 1 olabilir mi?” sorusunu akla getirir. Diyelim ki 0/0 işleminin sonucu 1 olsun. Bu 0/0 işleminin sonucunun böyle olmadığını irdeleyelim. 0 sayısını 0 dan farklı herhangi bir sayıya bölersek sonuç 0 çıkar. Örneğin 0/7 işleminin sonucu 0'dır. Pay 0 iken payda sıfıra çok yakın ama sıfır olmayan sayılar aldığımızda, sonuç yine 0 çıkar; örneğin 0/0.1 = 0, 0/0.001 = 0 ve 0/0.000001 = 0. Bu da bölmeyi paydayı gittikçe 0'a çok yakın sayılar seçtiğimizde  ifade 0/0 = 0 olabilir mi?” sorusunu akla getirir. Ancak önceki durumdan 0/0 sonucu 1 çıkarken şimdi burada 0/0 işleminin sonucu 0 çıkmış olur ki iki farklı yaklaşım iki farklı sonuç verdiği için bu durum bir çelişki oluşturur: Bir yandan sonuç 1 gibi görünürken diğer yandan 0 gibi görünmektedir. Bu bir çelişki olur. İşte bu nedenle 0/0’ın tek bir kesin sonucu yoktur ve bu ifade matematikte belirsiz olarak kabul edilir.
Analiz ve kalkülüs perspektifinden bakıldığında 0/0 ifadesi, yalnızca aritmetik düzeyde tanımsız bir oran olmaktan çıkarak, limit süreçlerinde belirleyici bir yapısal belirsizlik hâline gelir. Kalkülüsün temel kavramlarıyla ilişkilendirdiğimizde bu durum daha net anlaşılır. Limit hesabında herhangi bir sayıya yaklaşırken f(x)/g(x) değeri 0/0 çıktığında, (aynı sayıya yaklaşırken limit alınınca bile) farklı limit değerleri ortaya çıkacağı için fonksiyonlar farklı olduğunda 0/0 belirsiz olarak ifade edilir. Aşağıda iki farklı 0/0 belirsizliği limit örneği verilmiştir:
lim (x²-4)/(x-2) fonksiyonu x=2 için limit alınırsa 0/0 belirsizliği oluşur ve bunun sonucu 4 çıkar. lim (x-2)/(2x-4) fonksiyonu x=2 için limit alınırsa 0/0 belirsizliği oluşur ve bunun sonucu 1/2 çıkar. Aynı sayıya yaklaşırken 0/0 ifadesi en basitinden iki farklı sonuç çıkmıştır. Bu nedenle 0/0 ifadesi limitte bir belirsizlik olarak alınır.
Peki bölme işleminde 0 ile bölmek neden tanımsızdır? Yani A/0 neden tanımsızdır? Bölme işleminin matematikteki tanımı çarpma işleminin tersi üzerine kuruludur. Bir sayıyı başka bir sayıya böldüğümüzde aslında şu ilişkiyi kurarız. "a sayısı b sayısına bölündüğünde c elde ediliyorsa, bu ancak a=b*c eşitliğinin doğru olması halinde mümkündür." Bu tanımın geçerli olabilmesi için bölenin, yani paydanın sıfırdan farkl olması gerekir. Çünkü bölen olarak sıfır alındığında bu tanım çöker. Bir sayının sıfır ile çarpım her zaman sıfırdır dolayısıyla a = 0. c eşitliği ancak a'nin da sıfır olması durumunda sağlanabilir. a sıfır değilse denklem çözümsüz kalır, a sıfırsa da denklem tüm c değerleri için sağlanır, c yerine 0=5*0, 0=7*0, 0=13*0, 0=-4*0 gibi ne yazılırsa yazılsın sonuç doğru olur ve tek bir sonuç elde etmek mümkün olmaz. Bu durumda bölme işlemi, işlemlerin temel özelliği olan "her girdi için tek bir çıktı üretme' ilkesini kaybeder. Bu nedenle bölme işleminde hiçbir zaman payda 0 olamaz. Yani A/0 tanımsızdır.
Cebirsel olarak da A/0 bölme işlemi tanımsızlık sunar. a = b = 1 olsun. Önce 1=1 yani a = b eşitliği yazılsın. Sonra eşitliğin her iki tarafını a (1) ile çarpalım. a² = ab, ardından her iki taraftan da b² ifadesini çıkaralım. Buradan bir özdeşlik elde etmeye çalışalım. a² – b² = ab – b² iki kare farkı özdeşliği elde edilir. Bu da (a + b)(a – b) = b(a – b) şeklinde çarpanlara ayrılır. Buraya kadar her şey doğru olmuştur. Şimdi hatayı yapalım. Eşitliğin her iki tarafını (a – b)’ye yani (1-1=0) ile bölelim. a = b olduğundan a – b = 0’dır. Yani yapılan işlem 0’a bölmedir ve matematikte tanımsızdır. Buna rağmen bölünürse (a + b)(a – b)/(a-b) = b(a – b) /(a-b)  işleminin sonucu a + b = b bulunur ki bu durumda yani 1 + 1 = 1 çıkar ve buradan 2 = 1 gibi saçma bir sonuç elde edilir. Bu sonucun nedeni tamamen 0’a bölme hatasıdır; işlem geçersizdir. Bu işlem hatası bize 0 ile bölmenin tanımsız olacağını gösterir. 

Limitte ∞-∞ belirsizliği

-∞ belirsizliği limit çözümleri yapılırken ∞/∞ belirsizliği (Bkz.Limitte ∞/∞ belirsizliği)  veya 0/0 belirsizliklerine (Bkz.Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde, limit hesabında payda eşitlemesi yoluyla çözüme ulaşılır. Köklü ifadelerde ise verilen limit hesabı yapılırken köklü ifadenin eşleniğiyle çarpımı yoluyla çözüme ulaşılır. -∞ belirsizliği için aşağıda verilen limit formülünün kullanımı da hesaplamalarda kolaylık sağlar.
| | Devamı... 3 yorum

Limitte ∞/∞ Belirsizliği

Limitte polinom fonksiyon olarak verilen ifadelerde x değişkeni için bulunan ∞/∞ belirsizliklerinin çözümünde temel mantık olarak en büyük dereceli terime göre paranteze alma işlemi yapılır.Daha sonra genişletilmiş reel sayılardaki limit (Bkz. Genişletilmiş reel sayılarda limit) kurallarına göre hareket edilerek sonuca ulaşılır. 
| | | Devamı... 4 yorum

Limitte 0/0 Belirsizliği

0/0 Belirsizliklerinde verilen fonksiyonlar çarpanlara ayırma işlemlerinden yararlanılarak sadeleştirilmeye çalışılır. Daha sonra x değişkeni için verilen sayı değerine göre limit sonucu hesaplanır. Trigonometrik fonksiyonların oluşturduğu bu tip 0/0 belirsizliklerinde ise sinx/x limite bakmak daha yararlı olacaktır. Bu sinx/x ve tanx/x limitlerinin hesaplanış yöntemine (Bkz. sinx/x limiti) göre diğer trigonometrik fonksiyonların limitleri bulunabilir. 

Sinx/x Limiti İspatı

Sinx/x limiti hesaplaması yapılırken birim çemberden yararlanılabilir. Öncelike birim çember çizilir. 
Birim çemberde herhangi bir x açısının seçilmesi ile birlikte aşağıda da gösterildiği gibi |OH|, |TA| ve |PH| uzunluklarının trigonometrik oranlar cinsinden değerleri yazılır. Daha sonra oluşan üçgende kenar uzunlukları arasında aynı açılara göre kenarların ve yay parçasının arasındaki büyüklük sıralaması yazılır. Daha sonra yazılan bu sıralamada, eşitsizliğin her iki tarafı sinx ile bölünür. Ortaya çıkan fonksiyon x/sinx fonksiyonu olur. Bu fonksiyonun  x=0 noktasına yaklaşırken limit değeri alınırsa bu durumda x/sinx limiti ve sinx/x limit değerleri bulunmuş olur.

Burada x değeri sonsuza yaklaşırken aynı fonksiyon için limit hesabı yapılırsa sinx/x limiti 0 olur. Sinüs fonksiyonunun tanım aralığından yararlanarak değer aralığı yazıldıktan sonra eşitsizliğin her iki tarafı da x ile bölünerek sinx/x fonksiyonu elde edilir. Eşitsizliğin her iki tarafında x sonsuza yaklaşırken limit değeri hesaplanır.Daha sonra arada sıkışmış olan sinx/x fonksiyonun sonsuza yaklaşırken limit değeri bulunmuş olur. (Bu teoreme sandviç teoremi veya sıkıştırma teoremi adı verilir.)

.....Sıkıştırma teoremine göre, bir f fonksiyonunun x=a noktasını içeren bir aralıkta, bu noktadaki limit değerlerini birbirine eşit ve limitini L olarak hesaplayabildiğimiz g ve h fonksiyonları arasında kaldığını gösterebiliyorsak,f  fonksiyonunun bu noktadaki limiti de önceki limit değeri olan L'ye eşit olmak zorundadır. Limit fonksiyonun x=a noktasındaki değeri ile ilgilenmediği için, sıkıştırma teoreminin kullandığımız g(x)<f(x)<h(x) eşitsizliği x=a noktasında geçerli olmak zorunda değildir, önemli olan f(x) fonksiyonun değerinin bu aralıkta x=a dışındaki noktalarda, g ve h fonksiyonlarının arasında kalmasıdır. Sıkıştırma teoreminde g ve h fonksiyonlarının  bir noktadaki limitinin tanımlı ve eşit olduğunu biliyorsak, eşitsizliğe göre arada yer alan f fonksiyonunun da aynı noktadaki limitinin bu L değerine  eşit olması gerekmektedir. sinx/x fonksiyonun limit hesabı, bu sıkıştırma teoreminin uygulanışına güzel bir örnektir.

 


Bu özel limit kullanılarak farkı teoremlerin de ispatları yapılabilir. Sinüs fonksiyonu için geçerli olan bu limit özelliği tanjant fonksiyonunda da aynı şekilde uygulanabilir. 

Aşağıdaki Yazılar İlginizi Çekebilir!!!