Net Fikir » Tüm Yazılar
Yaz Dönemi Matematik Çalışma Planı
John Farey Dizisi
Bir Farey dizisi, genellikle Fn olarak gösterilir ve paydası en fazla n olan tüm kesirleri içerir. Bu kesirler, sıralı bir şekilde düzenlenir ve her ardışık kesir, birbirine en yakın iki kesir arasındaki farkı minimize edecek şekilde seçilir. Bu dizi, her zaman 0 ve 1 ile başlar ve biter, çünkü bu iki sayıya eşit olan kesirler dizinin ilk ve son elemanlarıdır. Farey dizisi, rasyonel sayıları belirli bir düzene göre sıralamak için kullanılır.
Farey dizisinin önemli özelliklerinden biri, her iki ardışık kesir arasındaki farkın belirli bir ölçüye sahip olmasıdır. Bu fark, her iki kesirin paydalarının büyüklüğüne bağlı olarak değişir, ancak genellikle Farey dizisinin özelliklerine göre çok küçük olur. Bu da, rasyonel sayılar arasındaki "yoğunluğu" göstermektedir. Yani, Farey dizisindeki kesirler ne kadar büyük bir diziyi kapsasa da, ardışık iki kesir arasındaki fark hala çok küçüktür. Dizinin elemanları a/b ve c/d ise bu iki dizi terimi arasında a.d-b.c=1 eşitliği vardır. Aşağıdaki terimler arasındaki kurala dikkat edebilirsiniz.Örneğin F5 Farey dizisi, paydası en fazla 5 olan 0 ile 1 arasındaki kesirlerin sıralandığı bir dizidir. Bu dizide yer alan tüm kesirler, paydaları 5'e kadar olan rasyonel sayılardır. Dizinin doğru sıralaması şu şekildedir:
F5 = {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
Farey dizisi F7, paydası en fazla 7 olan ve 0 ile 1 arasındaki rasyonel kesirlerin sıralandığı bir dizidir. Bu dizideki tüm kesirlerin paydası 7'yi geçmez ve her iki ardışık kesir arasındaki fark, Farey dizisinin özelliklerine uygun şekilde minimize edilmiştir. Bu kesirler, büyüklük sırasına göre dizilmiştir ve matematiksel olarak birbirine yakın olacak şekilde yerleştirilmiştir.
F7 = { 0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1 }
Farey dizisi F8 için terimi almak, 8. paydadan oluşan Farey dizisinin elemanlarını bulmayı içerir. Bu durumda, F8 dizisinin elemanları, 8'e kadar olan paydalara sahip olan ve birbirine en yakın olan kesirlerden oluşur. Burada kesirler sırasıyla artan bir şekilde yerleştirilmiştir.
F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1}
Çember ve Daire Ünitesi Konu Başlıkları
Çemberde teğet ve kiriş özellikleri
**Koordinatları verilen noktanın çembere göre kuvveti
**Çemberler yardımıyla fraktal oluşturma
Üçgenin Çevrel Çemberi ve alanı
Üçgenin çevrel çember/sinüs alan formülü
İçteğet çemberi çizilen üçgenin alan formülü
Çemberin çevresinin iple sarılması
**Çemberin çevresi integralle ispatı
Dairede çevre ve alan özellikleri
**Dairenin alanın integralle ispatı
(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir.
Dairede çevre ve alan özellikleri
Dairenin alanı integralle ispatı
Dairenin alanı ve ispatı
Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.
Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır.
Çemberin çevresinin iple sarılması
Çemberin çevresi integralle ispatı
Çemberin çevresi ve ispatı
O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur.
Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.






























