2021 TYT Matematik Soruları ve Çözümleri

2021 TYT Matematik sınavındaki sorular, tamamen lise müfredatı içerisinde olan konuların, yenilikçi problem tarzındaki sorulardan oluşmuştur. Önceki yıllara göre zorlayıcı soruların olduğunu kabul etmek gerekir.  Problemler ünitesi ile ilgili soruların başarı sıralamasını belirleyici tarzda, zorlayacak biçimde sorulmuş olması, yüzyüze eğitimin tam olarak yapılamadığı şu zaman diliminde, 120 soru için 135 dk'lık bir süre olduğu düşünülürse, bu sınavda matematik sorularının öğrencileri çok zorladığını düşünüyorum. Ders kitabı bilgileri ve matematik müfredatı dikkate alınarak hazırlanan sınavda, 30 soru Matematik, 10 adet de Geometri sorusu sorulmuştur. Klasik soru biçiminin çok az olduğu ve özellikle geometri sorularının daha fazla yorumlama becerisi gerektiği de ayrıca ifade edilmelidir. TYT Matematik 2021 sınavının konulara göre soru dağılımı aşağıdaki tablodaki gibidir. 


TYT-2021 MATEMATİK

Adet

Temel Kavramlar, Basamak Kavramı

3

Faktöriyel

1

Rasyonel Sayılar

1

Basit Eşitsizlikler ve Sıralama

2

Mutlak Değer

1

Üslü İfadeler

1

Köklü İfadeler

1

Bölme ve Bölünebilme

1

Çarpanlara Ayırma

1

Denklem Kurma Problemleri

12

Fonksiyonlar

1

Mantık

1

Kümeler

1

Permütasyon, Kombinasyon

1

Olasılık

1

İstatistik-Veri Analizi

1

Üçgenler

5

Dörtgenler

2

Çokgenler

1

Katı Cisimler

2

TOPLAM

40

Yaz Dönemi Matematik Çalışma Planı

Sevgili öğrenciler, uzun ve yorucu bir ders döneminin ardından yaz tatili dönemine giriyoruz. Bu yaz dönemlerinde, birçok öğrenci ders çalışmaktan kaçıp, sadece eğlence ve dinlenmeye zaman ayırarak, oldukça verimsiz bir şekilde tatilini geçirebiliyor. Ancak bir amacı olan başarılı öğrenciler, her zaman boş vakitlerinin kıymetini bilen (özel anlamda da yaz tatilini verimli bir şekilde değerlendiren) öğrencilerdir. Tatil kavramı; ekranların başında vakit öldürmek, boş boş gezmek ve sadece oyun/eğlence anlamına gelmemelidir. Elbette uzun yaz tatili, öğrencilerin bedenen ve zihnen dinlenme zamanıdır.  Lakin bu "dinlenme" vakitlerin boşa harcanmasına, amaçsız bir şekilde heba edilmesine sebep olmamalıdır. Esasında herşeyi vaktinde ve düzenli olarak yaptığımız zaman, stres ve kaygıdan uzaklaşarak yaratılış amacımıza uygun bir hayata sahip olabiliriz. İslam dini, asla boş kalmayı ve tembelliği kabul etmez. Kur’ân-ı Kerîm’de Peygamber efendimize hitaben: “O halde önemli bir işi bitirince hemen diğerine koyul!” [İnşirah Suresi/7] buyrulmaktadır. Âyet-i Kerime, bir iş tamamlandığında boş kalarak dinlenilmesini değil, bilakis insana fayda veren farklı bir işle meşgul olunmasını emrediyor. Kur’an-ı Kerim'de zikredilen ve tavsiye edilen dinlenme çeşidi bu şekildedir. Kur’an-ı Kerim'in "insanın başıboş olarak dünyaya gönderilmediğini" [Kıyamet Suresi/36] ifade ettiği biçimiyle, kamil insanın “tembellik ve boşluk” anlamlarına gelen "tatil" (عطله) kelimesi ile bağdaştırılabilecek herhangi bir yönü yoktur. Bir işi bitirdiğiniz zaman eğer dinlenmek istiyorsak; boş ve âtıl kalarak değil, iş değişikliği yaparak veya başka bir işle meşgul olarak ancak kamil manada dinlenebiliriz.  

John Farey Dizisi

Farey dizileri, adını İngiliz matematikçi John Farey'den alır ve birbirine yakın kesirlerin bir sıralaması olarak tanımlanır. John Farey  (1766-1826), bir jeolog olmasına rağmen matematikle ilgili yaptığı bir gözlem nedeniyle matematik tarihinde önemli bir yere sahip olmuştur. Farey dizisi, ona adını veren bu gözleminden doğmuştur. Farey, Woburn'da yerel bir okulda eğitim aldıktan sonra Halifax'ta matematik, çizim ve haritacılık üzerine eğitim görmüştür. Farey, 1792'de Bedford Dükalığı'nın Woburn arazilerinin yöneticisi olarak atanmış ve bu görevde çalışırken jeolojiye olan ilgisi artmıştır. 1801'de William Smith ile tanışarak stratigrafi bilimi üzerine bilgi edinmiş, bu alanda önemli katkılarda bulunmuştur. Farey, jeolojiye olan katkılarının yanı sıra, bilimsel makaleler yayımlamış ve William Smith'in jeolojik çalışmalarının takdir edilmesi için çaba sarf etmiştir. Farey, 1804'te Philosophical Magazine was On the mensuration of timber "Kereste ölçümü" üzerine yazdığı ilk makalesini, 1824'te ise On the velocity of sound and on the Encke planet "Sesin hızı ve Encke gezegeni" üzerine yazdığı son makalesini yayımlamıştır. Farey'in matematiksel katkısı, 1816 yılında yayımladığı "On a curious property of vulgar fractions" (Sade Kesirlerin Garip Bir Özelliği) başlıklı makalesi ile olmuştur. Bu makalede Farey, ismi ile anılan meşhur dizisini tanıtarak, ardışık kesirlerin özel bir özelliğini keşfetmiştir. Farey dizisi, paydalı 1'e kadar olan kesirler arasındaki sıralamadır ve her bir kesir, yanındaki kesirlerin paylarının toplamı, paydalarının toplamı olarak bulunabilir. Farey, bu özelliği örneklerle açıklamış, ancak modern bir ispat sağlamamıştır. Farey'in keşfi, Fransız matematikçi Cauchy tarafından ispatlanmıştır ve Farey'in bu konuda yaptığı başvuru, diğer bazı çalışmalardan önce olsa da ispat eksikliği nedeniyle matematiksel olarak daha geniş bir kabul görmemiştir. Ayrıca, Farey'den önce, 1802'de Haros adlı bir araştırmacı benzer bir diziyi tanımlamış, ancak Farey'in belirttiği özelliği açıkça göstermemiştir. Farey, matematiksel katkılarının yanı sıra, tarihsel olarak daha çok jeoloji alanındaki çalışmalarıyla tanınmıştır. 6 Haziran 1826 yılında Londra'da ölmüştür. Farey'in jeoloji alanındaki araştırmaları ve haritaları, jeolojik eserlerin bir kısmı, British Museum'a bağışlanmıştır.
 
Farey dizisi, 0 ile 1 arasındaki rasyonel sayılardan oluşan, belirli bir payda sınırına sahip bir dizidir. Farey dizileri, özellikle rasyonel sayılar arasındaki ilişkilerin incelenmesinde kullanılır. Farey dizisinde, 0 ile 1 arasındaki ve paydası en fazla n olan tüm kesirler yer alır.  Farey dizisi Fn, 0 ile 1 arasındaki tüm kesirlerden oluşan, payları a ve paydalı b olan kesirlerin, a.d-b.c=1 bağıntısıyla sıralandığı bir kümedir. Buradaki kısıtlamada paydanın b≤n olmasına dikkat edilirken kesirler büyüklüklerine göre küçükten büyüğe doğru sıralanır. Farey dizileri, özellikle sayıların büyüklüğü çok arttığında, çok hassas bir yakınsaklık gösterir. Bu kesirler sıralandıkları sıraya göre birbirine yakın olacak şekilde düzenlenir ve her iki ardışık kesir arasındaki fark, Farey dizisinin matematiksel özelliklerine uygun şekilde mümkün olan en küçük farklardan biri olur. Farey dizileri, sıklıkla sayı teorisi, analitik geometri ve rasyonel sayılarla yapılan hesaplamalar gibi alanlarda kullanılır.
Bir Farey dizisi, genellikle Fn olarak gösterilir ve paydası en fazla n olan tüm kesirleri içerir. Bu kesirler, sıralı bir şekilde düzenlenir ve her ardışık kesir, birbirine en yakın iki kesir arasındaki farkı minimize edecek şekilde seçilir. Bu dizi, her zaman 0 ve 1 ile başlar ve biter, çünkü bu iki sayıya eşit olan kesirler dizinin ilk ve son elemanlarıdır. Farey dizisi, rasyonel sayıları belirli bir düzene göre sıralamak için kullanılır.
Farey dizisinin önemli özelliklerinden biri, her iki ardışık kesir arasındaki farkın belirli bir ölçüye sahip olmasıdır. Bu fark, her iki kesirin paydalarının büyüklüğüne bağlı olarak değişir, ancak genellikle Farey dizisinin özelliklerine göre çok küçük olur. Bu da, rasyonel sayılar arasındaki "yoğunluğu" göstermektedir. Yani, Farey dizisindeki kesirler ne kadar büyük bir diziyi kapsasa da, ardışık iki kesir arasındaki fark hala çok küçüktür. Dizinin elemanları a/b ve c/d ise bu iki dizi terimi arasında a.d-b.c=1 eşitliği vardır. Aşağıdaki terimler arasındaki kurala dikkat edebilirsiniz.Örneğin F5 Farey dizisi, paydası en fazla 5 olan 0 ile 1 arasındaki kesirlerin sıralandığı bir dizidir. Bu dizide yer alan tüm kesirler, paydaları 5'e kadar olan rasyonel sayılardır. Dizinin doğru sıralaması şu şekildedir:
F5 = {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
Farey dizisi F7​, paydası en fazla 7 olan ve 0 ile 1 arasındaki rasyonel kesirlerin sıralandığı bir dizidir. Bu dizideki tüm kesirlerin paydası 7'yi geçmez ve her iki ardışık kesir arasındaki fark, Farey dizisinin özelliklerine uygun şekilde minimize edilmiştir. Bu kesirler, büyüklük sırasına göre dizilmiştir ve matematiksel olarak birbirine yakın olacak şekilde yerleştirilmiştir. 
F7 = { 0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1 }
Farey dizisi F8 için terimi almak, 8. paydadan oluşan Farey dizisinin elemanlarını bulmayı içerir. Bu durumda, F8 dizisinin elemanları, 8'e kadar olan paydalara sahip olan ve birbirine en yakın olan kesirlerden oluşur. Burada kesirler sırasıyla artan bir şekilde yerleştirilmiştir.
F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1}
Buna benzer dizilerin oluşturulması, rasyonel sayılar arasındaki düzenin ne kadar yoğun olduğunu gösterir. Görüldüğü gibi, her iki ardışık kesir arasındaki fark son derece küçüktür. Örneğin, 1/7 ve 1/6 arasındaki fark, oldukça küçüktür. Daha büyük paydalar alındığında farkların daha da küçüldüğü görülecektir. Farey dizisinin her iki ardışık elemanı arasındaki benzer farklar, tüm dizide gözlemlenir. 
| | Devamı... 0 yorum

Çember ve Daire Ünitesi Konu Başlıkları

Çember, düzlemde sabit bir noktaya eşit uzaklıkta bulunan noktaların kümesinin oluşturduğu geometrik şekile verilen isimdir. Düzlemde bir çemberin çevrelediği iki boyutlu yüzeye de daire denir. Çember tanımında bahsi geçen sabit nokta, çemberin merkezidir. Çemberin merkezi ile çember üzerinde alınan herhangi bir noktayı birleştiren doğru parçasına "yarıçap", yarıçapın iki katı uzunluğa da "çap" denir.  Genellikle,yarıçap r (küçük r harfi), çap ise 2r ile gösterilir. Matematikte çevrel çemberin yarıçapını R (büyük R harfi) ile gösteririz. Bu nedenle sıradan bir çemberin yarıçapını R şeklinde büyük harfle gösterek kullanmak hatalıdır. Yarıçap ve çapların uzunlukları sabitdir. 
Çember üzerindeki iki noktayı birleştiren doğru parçasına ise "kiriş" adı verilir. Kirişlerin uzunlukları farklı olabilir. Bu anlamda, merkeze göre birbirine simetrik olan iki noktayı birleştiren doğru parçasının uzunluğu aynı zamanda çapa eşittir. Çap en uzun kiriştir. 
Çemberin iki noktası arasında kalan parçaya "çember yayı" (çember parçası) denir. Çember üzerindeki iki farklı noktadan geçen doğruya "kesen" adı verilir. Bir kesenin, çember içerisinde kalan parçasına da "kiriş" denir. 

Çember, bulunduğu düzlemi; çemberin iç bölgesi, dış bölgesi ve kendisi olmak üzere üç bölgeye ayırır. Çemberin kendisi ve iç bölgesinin birleşiminden daire oluşur.

Çemberin merkezi, merkez açının köşesidir. Çevre açının köşesi, çemberin üzerindedir. Merkez açının içinde kalan çember parçasına, "merkez açının gördüğü yay"; çevre açının içinde kalan çember parçasına, "çevre açının gördüğü yay" denir. Merkez açının ölçüsü gördüğü yayın ölçüsüne eşittir. Çevre açının ölçüsü gördüğü yayın ölçüsünün yarısı kadardır. Merkez açının kenarlarının, çemberi kestiği noktaların arasındaki yaylardan birisi "majör", yani büyük çember yayı, diğeri de "minör", yani küçük çember yayıdır. Merkez açının gördüğü yay, minör yaydır. Merkez açının ölçüsü, 0 ile 180 derece arasında, çevre açı yaylarının ölçüleri ise, 0 ile 360 derece arasındadır. Tüm çemberin ölçüsü 360 derecedir. Radyan cinsinden ölçüldüğünde 2π radyan olur. 

Çemberde açı özellikleri

Çemberde teğet ve kiriş özellikleri

Çemberde Kiriş Özellikleri

Çemberde kiriş uygulamaları

Kirişler Dörtgeni


Çembere teğet çizmek

Çemberde Teğet Özellikleri

Çemberde teğet uygulamaları

Teğetler Dörtgeni


**Çemberde kuvvet fonksiyonu

**Koordinatları verilen noktanın çembere göre kuvveti


**Çemberler yardımıyla fraktal oluşturma


Üçgenin Çevrel Çemberi ve alanı

Üçgenin çevrel çember/sinüs alan formülü

İçteğet çemberi çizilen üçgenin alan formülü

Birim Çember

**Açı Ölçü Birimleri

Sinüs teoremi ve ispatı


Çemberin çevresi ve ispatı

Çemberin çevresinin iple sarılması

**Çemberin çevresi integralle ispatı

Dairenin alanı ve ispatı

Dairede çevre ve alan özellikleri

**Dairenin alanın integralle ispatı


**Pi sayısı

**Pi sayısının tarihçesi


(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 

| | | | Devamı... 0 yorum

Dairede çevre ve alan özellikleri

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılarak çokgen limit değerinde çembere yaklaştırılır. (Bkz. Dairenin alanı)
| | | | Devamı... 0 yorum

Dairenin alanı integralle ispatı


Bir düzgün çokgende kenar sayısı ne kadar fazla olursa, düzgün çokgen o kadar çembere benzer. Bu durumda bir düzgün çokgende kenar sayısını sonsuza yaklaştırdığımızda, (limit değeri) düzgün çokgen artık çembere dönüşmüş olur. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.  (Bkz. Dairenin Alanı) Bu şekilde dairenin alanın hesaplanmasında, limit yaklaşımı metodu kullanılır. 
Benzer şekilde dairenin alanı, elipsin alanında olduğu gibi integral yardımıyla da hesaplanabilir.  (Bkz. Elipsin alan ispatı) Bu yöntem ile dairenin alanı hesaplanırken; belirli integral ve açısal (kutupsal) dönüşüm kullanılır.

Dairenin alanı ve ispatı

Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur. 

Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır. 

Dairenin alan hesabı için, yukarıda anlatılan özellikle ilgili olarak hazırlanmış animasyonu, aşağıdaki videodan izleyebilirsiniz. (Daire Alanı-Youtube)
Yukarıdaki örnek matematiksel olarak ifade edilirse; Bir düzgün çokgende kenar sayısını ne kadar arttırırsak, o çokgen o kadar çembere benzer. Yani çokgenin kenar sayısını sonsuza yaklaştırdığımızda, çokgen (limit değeri) artık çembere dönüşmüş olur. Bu şekilde dairenin alanı hesaplanırken, limit yaklaşımından yararlanılır. (Bkz. sinx/x limiti)

Daire alanındaki mantıkla, benzer şekilde silindirin hacmine de ulaşılır. Yani bir silindir taban dairesi baz alınarak, çok sayıda silindir dilimine ayrıldığında, bu dilimler boşluk kalmayacak şekilde dizilirse ortaya bir dikdörtgen çıkar. Silindirdeki dilim sayısı sonsuz olduğunda, silindirin toplam hacmi, ortaya çıkan dikdörtgenin alanına eşit olacaktır. Konu ile ilgili hazırlanmış silindir hacim materyalini inceleyebilirsiniz.  (Bkz. Silindirin Hacmi Materyali) 

Yarıçapı, r olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı integralle hesaplandıktan sonra, çeyrek daire diliminin alanı bulunur.  Bulunan bu sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanmış olur. İntegral hesabında açısal (kutupsal) dönüşüm uygulanır.
Daire diliminin alanı bulunurken, dilimin gördüğü merkez açının ölçüsü bilinmelidir. (Bkz. Çemberde Açılar) Bunun için ya merkez açının ölçüsü verilmeli ya da bu daire dilimini çevreleyen yayın uzunluğu bilinmelidir. Buna göre, oran-orantı yardımıyla daire diliminin alanı hesaplanır.


Çemberin çevresinin iple sarılması

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Bazı durumlarda birleştirilmiş çemberlerin çevrelerinin  bir kayış ya da ip benzeri araçlarla çevrelenmesi ve gergin biçimde sarılması istenebilir. Bunların çevre uzunluğunun hesaplanmasında çemberin çevre formülü ve oluşacak çokgenlerin çevre formüllerinin toplamının bilinmesi gerekir. 
n tane eş çemberin çevresine gergin sarılan ipin uzunluğu çemberin merkezlerinin birleştirilmesi ile elde edilen n-genin çevre uzunluğu ile bir çemberin çevre uzunluğunun toplamına eşittir. Aşağıdaki şekilden de görüleceği üzere, bir çemberin ertafında sarılacak gergin ipin uzunluğu, 2πr kadardır. 
Aşağıda verilen çeşitli çemberler için çevrelerine gergin ipler sarılmıştır. Bu çemberlerin etrafına sarılan gergin iplerin uzunluklarının nasıl olacağına dikkat ediniz.

| | | Devamı... 0 yorum

Çemberin çevresi integralle ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin Çevresi) Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)
| | | | | | Devamı... 0 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!