Çemberin çevresi ve ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur. 

Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.


Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)

O merkezli, r yarıçaplı dairede AOB merkez açısının gördüğü yay uzunluğunun ölçüsü |AB|;  oran ve orantı yardımıyla bulunur. Daireyi sınırlayan çember, ölçüsü 360° olan bir yay olarak kabul edilebilir. Buna göre orantı yapılırsa merkez açıya karşılık gelen yayın uzunluğu bulunmuş olur.



Çokgenler Ünitesi Konu Başlıkları

Düzlem üzerinde dört farklı noktanın ardışık sırayla birleştirilmesiyle oluşan kapalı geometrik şekle dörtgen ismi verilir. Dörtgenler çokgenlerin özel bir çeşidi olduğu için farklı başlıklar altında özellikleri incelenebilir. Çokgenler ünitesinde yer alan aşağıdaki konu başlıkları ile ilgili olarak hazırlanmış konu anlatımı ve önemli teoremlerin ispatlarına, örnek soru çözümlerine ilgili bağlantının/yazının üzerine tıklayarak ulaşabilirsiniz. 

Çokgenler ve Genel Özellikleri

Dörtgenlerde Açı Özellikleri ve ispatları

Dörtgenlerde Uzunluk Teoremleri ve İspatları

Dörtgenlerde Alan Bağıntıları

**Dörtgenlerin vektörel alan formülleri


Yamukta Özellikler ve İspatları

Yamukta alan bağıntıları

Paralelkenar ve Özellikleri

Paralelkenarda Alan Hesabı

Eşkenar Dörtgen ve Özellikleri

Dikdörtgen ve Özellikleri

Karenin Özellikleri

Deltoidin Özellikleri


Teğetler Dörtgeni

Kirişler Dörtgeni


Katı Cisimlerin Alan ve Hacim Formülleri

Piramitin Alanı ve Hacmi

Prizma ve Piramitlerde Euler Bağıntısı

**Çok Yüzlüler ve Çeşitleri

**Çok Yüzlü cisimler için "Euler Formulü"

**Platon Katı Cisimleri

Çokgenlerle Fraktal Oluşturma

Çokgenlerde Kaplama Teknikleri

Çokgenlerle Desen-Kaplama Oluşturma

**Geometrik Cisimlerin Birim Küp Kodlaması

Geometrik Cisimlerde Simetri


(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 

Deltoid ve Özellikleri

Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanlarda belli bir denge olduğu için, daha kolay uçabilmektedir. Kendi yaptıklarımızın da sağlıklı bir şekilde uçabilmesi için belli özellikleri olmalıdır. İşte çocukluğumuzun güzel hatıralarında saklanmış, gökyüzünde sıklıkla karşılaştığımız bu geometrik şeklin adı deltoid'tir.  

| | | | | Devamı... 0 yorum

Karenin Özellikleri

Kare, matematikteki en temel geometrik şekillerden birisidir. Pek çok yerde kullanımı mevcuttur. Özellikle seramik/fayans döşeme ve kaplamalarında, mobilya tasarımlarında sıklıkla kare tercih edilir. Kenar uzunlukları eşit olan dikdörtgene kare (murabba) denir. 

Kare, bir düzgün çokgen örneğidir.  Kare esasında özel bir dikdörtgen çeşididir. Aynı zamanda eşkenar dörtgendir. Eşkenar dörtgende ve dikdörtgende yer alan tüm özellikleri sağlar. Bütün iç ve dış açıları 90 derecedir. iç açıları ve dış açıları ölçüleri toplamı 360 derece olup tamamı 90 derecedir. Köşegenleri dikdörtgendeki gibi birbirine eşittir ve birbirini ortalar. Köşegenlerin kesim noktası, karenin ağırlık merkezi (denge noktası) olur.

| | | | | | Devamı... 0 yorum

Dikdörtgen ve Özellikleri

Tüm açılarının ölçüsü, 90 derece olan paralelkenara dikdörtgen (mustatil) adı verilir. Paralelkenarın bütün özelliklerini taşır. Karşılıklı kenar uzunlukları birbirine eşittir. Her dikdörtgen, aynı zamanda bir paralelkenardır. Bu ifadenin tersi doğru olmaz. Yani her paralelkenar, her zaman bir dikdörtgen olmaz. Kare şekli de özel bir dikdörtgen formatıdır.

Eşkenar Dörtgen ve Özellikleri

Bütün kenar uzunlukları birbirine eşit olan paralelkenara eşkenar dörtgen denir. Paralelkenarın tüm özelliklerini sağlar.  (Bkz: Paralelkenar Özellikleri)

Eş veya benzer üçgenlerde yardımcı elemanlar

Bütün kenarları ve bütün açılarının ölçüleri birbirine eşit olan üçgenelere, eş üçgenler denir. Sonuç olarak; "Eş üçgenlerde, eş açılar karşısında eş kenarlar ve eş kenarlar kaşısında da eş açılar bulunur." Eş üçgenlerde karşılıklı açı ve kenar uzunlukları eşit olduğu gibi iki eş üçgende yardımcı elemanlar olan yükseklik, kenarortay ve açıortay da birbirine eşit uzunluktadır.

İkizkenar üçgende yardımcı elemanlar

Üçgenin yardımcı elemanları, kenarortay, yükseklik ve açıortaydır. Taban açıları birbirne eşit olan üçgene ikizkenar üçgen denir. İkizkenar üçgende, eş açıların karşısındaki kenarların uzunlukları birbirine eşittir. İkizkenarlara ait, yükseklik, açıortay ve kenarortay uzunlukları, karşılıklı olarak birbirine eşittir.  

Paralelkenarda Alan Hesabı

Bir paralelkenarda, alan hesabı için taban uzunluğu ve yükseklik bilinmelidir. Paralelkenarın yüksekliği, paralelkenar içerisinde bir köşeden karşı kenara dik uzaklık olarak çizilebileceği gibi, o kenarın uzantısına da çizilebilir. 

Aşağıdaki Yazılar İlginizi Çekebilir!!!