Dairenin alanı integralle ispatı


Bir düzgün çokgende kenar sayısı ne kadar fazla olursa, düzgün çokgen o kadar çembere benzer. Bu durumda bir düzgün çokgende kenar sayısını sonsuza yaklaştırdığımızda, (limit değeri) düzgün çokgen artık çembere dönüşmüş olur. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.  (Bkz. Dairenin Alanı) Bu şekilde dairenin alanın hesaplanmasında, limit yaklaşımı metodu kullanılır. 
Benzer şekilde dairenin alanı, elipsin alanında olduğu gibi integral yardımıyla da hesaplanabilir.  (Bkz. Elipsin alan ispatı) Bu yöntem ile dairenin alanı hesaplanırken; belirli integral ve açısal (kutupsal) dönüşüm kullanılır.

Dairenin alanı ve ispatı

Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur. 

Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır. 

Dairenin alan hesabı için, yukarıda anlatılan özellikle ilgili olarak hazırlanmış animasyonu, aşağıdaki videodan izleyebilirsiniz. (Daire Alanı-Youtube)
Yukarıdaki örnek matematiksel olarak ifade edilirse; Bir düzgün çokgende kenar sayısını ne kadar arttırırsak, o çokgen o kadar çembere benzer. Yani çokgenin kenar sayısını sonsuza yaklaştırdığımızda, çokgen (limit değeri) artık çembere dönüşmüş olur. Bu şekilde dairenin alanı hesaplanırken, limit yaklaşımından yararlanılır. (Bkz. sinx/x limiti)

Daire alanındaki mantıkla, benzer şekilde silindirin hacmine de ulaşılır. Yani bir silindir taban dairesi baz alınarak, çok sayıda silindir dilimine ayrıldığında, bu dilimler boşluk kalmayacak şekilde dizilirse ortaya bir dikdörtgen çıkar. Silindirdeki dilim sayısı sonsuz olduğunda, silindirin toplam hacmi, ortaya çıkan dikdörtgenin alanına eşit olacaktır. Konu ile ilgili hazırlanmış silindir hacim materyalini inceleyebilirsiniz.  (Bkz. Silindirin Hacmi Materyali) 

Yarıçapı, r olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı integralle hesaplandıktan sonra, çeyrek daire diliminin alanı bulunur.  Bulunan bu sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanmış olur. İntegral hesabında açısal (kutupsal) dönüşüm uygulanır.
Daire diliminin alanı bulunurken, dilimin gördüğü merkez açının ölçüsü bilinmelidir. (Bkz. Çemberde Açılar) Bunun için ya merkez açının ölçüsü verilmeli ya da bu daire dilimini çevreleyen yayın uzunluğu bilinmelidir. Buna göre, oran-orantı yardımıyla daire diliminin alanı hesaplanır.


Çemberin çevresinin iple sarılması

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Bazı durumlarda birleştirilmiş çemberlerin çevrelerinin  bir kayış ya da ip benzeri araçlarla çevrelenmesi ve gergin biçimde sarılması istenebilir. Bunların çevre uzunluğunun hesaplanmasında çemberin çevre formülü ve oluşacak çokgenlerin çevre formüllerinin toplamının bilinmesi gerekir. 
n tane eş çemberin çevresine gergin sarılan ipin uzunluğu çemberin merkezlerinin birleştirilmesi ile elde edilen n-genin çevre uzunluğu ile bir çemberin çevre uzunluğunun toplamına eşittir. Aşağıdaki şekilden de görüleceği üzere, bir çemberin ertafında sarılacak gergin ipin uzunluğu, 2πr kadardır. 
Aşağıda verilen çeşitli çemberler için çevrelerine gergin ipler sarılmıştır. Bu çemberlerin etrafına sarılan gergin iplerin uzunluklarının nasıl olacağına dikkat ediniz.

| | | Devamı... 0 yorum

Çemberin çevresi integralle ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin Çevresi) Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)
| | | | | | Devamı... 0 yorum

Çemberin çevresi ve ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur. 

Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.


Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)

O merkezli, r yarıçaplı dairede AOB merkez açısının gördüğü yay uzunluğunun ölçüsü |AB|;  oran ve orantı yardımıyla bulunur. Daireyi sınırlayan çember, ölçüsü 360° olan bir yay olarak kabul edilebilir. Buna göre orantı yapılırsa merkez açıya karşılık gelen yayın uzunluğu bulunmuş olur.



Çokgenler Ünitesi Konu Başlıkları

Düzlem üzerinde dört farklı noktanın ardışık sırayla birleştirilmesiyle oluşan kapalı geometrik şekle dörtgen ismi verilir. Dörtgenler çokgenlerin özel bir çeşidi olduğu için farklı başlıklar altında özellikleri incelenebilir. Çokgenler ünitesinde yer alan aşağıdaki konu başlıkları ile ilgili olarak hazırlanmış konu anlatımı ve önemli teoremlerin ispatlarına, örnek soru çözümlerine ilgili bağlantının/yazının üzerine tıklayarak ulaşabilirsiniz. 

Çokgenler ve Genel Özellikleri

Dörtgenlerde Açı Özellikleri ve ispatları

Dörtgenlerde Uzunluk Teoremleri ve İspatları

Dörtgenlerde Alan Bağıntıları

**Dörtgenlerin vektörel alan formülleri


Yamukta Özellikler ve İspatları

Yamukta alan bağıntıları

Paralelkenar ve Özellikleri

Paralelkenarda Alan Hesabı

Eşkenar Dörtgen ve Özellikleri

Dikdörtgen ve Özellikleri

Karenin Özellikleri

Deltoidin Özellikleri


Teğetler Dörtgeni

Kirişler Dörtgeni


Katı Cisimlerin Alan ve Hacim Formülleri

Piramitin Alanı ve Hacmi

Prizma ve Piramitlerde Euler Bağıntısı

**Çok Yüzlüler ve Çeşitleri

**Çok Yüzlü cisimler için "Euler Formulü"

**Platon Katı Cisimleri

Çokgenlerle Fraktal Oluşturma

Çokgenlerde Kaplama Teknikleri

Çokgenlerle Desen-Kaplama Oluşturma

**Geometrik Cisimlerin Birim Küp Kodlaması

Geometrik Cisimlerde Simetri


(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 

Deltoid ve Özellikleri

Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanlarda belli bir denge olduğu için, daha kolay uçabilmektedir. Kendi yaptıklarımızın da sağlıklı bir şekilde uçabilmesi için belli özellikleri olmalıdır. İşte çocukluğumuzun güzel hatıralarında saklanmış, gökyüzünde sıklıkla karşılaştığımız bu geometrik şeklin adı deltoid'tir.  

| | | | | Devamı... 0 yorum

Karenin Özellikleri

Kare, matematikteki en temel geometrik şekillerden birisidir. Pek çok yerde kullanımı mevcuttur. Özellikle seramik/fayans döşeme ve kaplamalarında, mobilya tasarımlarında sıklıkla kare tercih edilir. Kenar uzunlukları eşit olan dikdörtgene kare (murabba) denir. 

Kare, bir düzgün çokgen örneğidir.  Kare esasında özel bir dikdörtgen çeşididir. Aynı zamanda eşkenar dörtgendir. Eşkenar dörtgende ve dikdörtgende yer alan tüm özellikleri sağlar. Bütün iç ve dış açıları 90 derecedir. iç açıları ve dış açıları ölçüleri toplamı 360 derece olup tamamı 90 derecedir. Köşegenleri dikdörtgendeki gibi birbirine eşittir ve birbirini ortalar. Köşegenlerin kesim noktası, karenin ağırlık merkezi (denge noktası) olur.

| | | | | | Devamı... 0 yorum

Dikdörtgen ve Özellikleri

Tüm açılarının ölçüsü, 90 derece olan paralelkenara dikdörtgen (mustatil) adı verilir. Paralelkenarın bütün özelliklerini taşır. Karşılıklı kenar uzunlukları birbirine eşittir. Her dikdörtgen, aynı zamanda bir paralelkenardır. Bu ifadenin tersi doğru olmaz. Yani her paralelkenar, her zaman bir dikdörtgen olmaz. Kare şekli de özel bir dikdörtgen formatıdır.

Aşağıdaki Yazılar İlginizi Çekebilir!!!