Sinüs teoremi ve ispatı

Sinüs teoremi, bir üçgende (kirişler üçgeni) bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Bir açının sinüsü trigonometri bilgisinden hatırlanacağı üzere, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün (dik açının karşısında kalan kenarın) birbirine oranıdır. Kısaca açının sinüsü, karşı dik kenar uzunluğunun hipotenüse oranıdır. Sinüs teoremi, bir açı ve iki kenar verildiğinde; bilinmeyen bir açıyı bulmak veya iki açı ve bir kenar verildiğinde de bilinmeyen bir kenar uzunluğunu bulmak için oldukça yararlı bir teoremdir.

Üçgenin çevrel çemberi ve alanı

Herhangi bir üçgenin köşe noktalarından çizilen çembere üçgenin çevrel çemberi denir. Esasında çember üzerinde alınan üç farklı noktayı birleştiren doğru parçaları (kirişler) yardımıyla çember içinde bir üçgen oluşturulur. Çevrel çemberin merkezi üçgenin iç bölgesinde veya dış bölgesinde yer alabilir. Meydana gelen bu üçgenin alanını, çevrel çemberin yarıçapını kullanarak bulabiliriz. Çevrel çember yardımıyla üçgenin alanı hesaplanırken, üçgenin bütün kenar uzunlukları çarpılır ve çarpım sonucu çevrel çemberin yarıçapının dört katına bölünür. Bu şekilde üçgenin alanı bulunmuş olur. 

TEOREM: Bir üçgenin alanı, tüm kenar uzunluklarının çarpımının, çevrel çemberin yarıçapının dört katına bölümüne eşittir. 

İSPAT-1:İspatını yaparken üçgenin sinüs alan formülü kullanılarak ispat yapılabileceği gibi çember özellikleri ve benzerlik kullanılarak da ispatlama yapılabilir. Bunun için bir çember çizelim. Ve çember üzerinde üç farklı nokta alarak bir üçgen oluşturalım. 

Şekilde ABC üçgeni çizilmiştir. Üçgende B noktasından indirdiğimiz yüksekliğe h diyelim. Aynı zamanda, BO doğrultusunu uzattığımızda, O merkezli çemberde |BD| çapını elde etmiş oluruz. ABD üçgeninde A açısı çapı gördüğünden, çapı gören çevre açının ölçüsü 90 derece olur. Aynı yayı gören çevre açılar birbirine eşit olduğu için D açısı ile C açısı birbirine eşittir. (Çünkü D açısı da C açısı da AB yayını görüyor.) Bu açıların ölçülerini y olarak adlandıralım. Üçgenin iç açıları toplamı 180 derece olduğu için, BEC üçgenindeki B açısıyla, ABD üçgenindeki B açısı birbirine eşittir. Bu açılara da x diyelim. x+y=90 derece olur. Şekilden de görüldüğü gibi BEC ve BAD üçgenlerinin iç açıların ölçüleri birbirine eşittir. Yani bu iki üçgen arasında açı açı açı benzerliği (AAA Benzerliği) vardır. 

Benzelik teoremi gereğince bu iki üçgende, açıların gördükleri kenarların oranları birbirine eşit olduğundan, 90 derecenin gördüğü kenarların oranı ile, y açılarının gördükleri kenarların oranı birbirine eşit olur. Buradan, a/(2.R) oranının h/c oranına eşit olduğu görülür. Bu eşitlik düzenlenip h tek başına bırakıldığında; yüksekliği h=(a.c)/(2.R) olarak buluruz. ABC üçgeninde alan formülü olan taban uzunluğu ile yüksekliğin çarpımının yarısı formülü uygulandığında, taban uzunluğu b, tabana ait yükseklik h olmak üzere, Alan(ABC)= (h.b)/2 olur. h yerine yukarıda bulduğumuz eşitliği yazıp düzenlediğimizde, Alan(ABC)=(a.b.c)/(4.R) elde ederiz. 

İSPAT-2:Sinüs alan bağıntısı kullanılarak da aynı formül ispatlanabilir. Bunun için üçgenin sinüs alan formülü yazılır ve buradan sinüs teoreminden elde edilen eşitlik yerine yazılarak, çevrel çember alan ispatı yapılmış olur.


Üçgende Alan Bağıntıları

Üçgenin alanı için yüksekliğin bilinmesi gerekebilir. Bir üçgenin herhangi bir köşesinden, karşı kenarına indirilen dikmenin karşı kenarı kestiği nokta ile köşeyi birleştiren doğru parçasına, üçgenin o kenarına ait yüksekliği denir. Üçgenin yükseklikleri, üçgenin çeşidine göre( dar açılı, dik açılı veya geniş açılı) üçgenin iç bölgesinde, üçgenin dış bölgesinde veya ügenin üzerinde kesişebilir. Geniş açılı üçgenlerde yüksekliğin, tabanın uzantısından çizileceğini unutmayınız.

Aşağıdaki Yazılar İlginizi Çekebilir!!!