Net Fikir » Kasım 2015 Arşivi
Doğrusal Denklem Sistemleri (Matrislerle Çözüm)
Daha önceki konumuzda doğrusal denklem sistemlerinin çözümünü elemanter satır ve sütun işlemleri yardımıyla yapmıştık. (Bkz. Dogrusal Denklem Sistemleri) Buradaki sayfamızda verilen herhangi bir doğrusal denklemin gerekli şartları sağlamasıyla genişletilmiş katsayılar matrisinin tersi ile denklem sisteminin genel çözümünü yapacağız.
(x1 , x2 , . . . , xn ) sıralı n-lisinin lineer denklem sistemin bir
çözümü olması için gerek ve yeter şart, bu sayıların oluşturduğu X matrisinin
AX = B matris denklemini sağlamasıdır. A matrisine sistemin katsayılar matrisi denir. Sistemin ilaveli (genişletilmiş) matrisinin katsayılar matrisi ile sağ taraf sabitleri matrisinin yan yana
getirilmesiyle elde edildiğine dikkât ediniz.
Denklem sayısı değişken sayısına eşit olan bir doğrusal denklem sisteminin katsayılar matrisi
bir kare matristir. Böyle bir sistemin bir ve yalnız bir çözümü olması için gerek ve yeter
şart, sistemin ilaveli matrisinin indirgenmiş biçimindeki sütun sayısının sıfırdan farklı satır
sayısından bir fazla olması, yani hiç sıfır satırı bulunmamasıdır ki, bu, sistemin katsayılar
matrisinin indirgenmiş biçiminin birim matris olmasına denktir. Bu durum katsayılar
matrisinin tersinin var olmasına da denktir ve çözümün bulunmasında ters matristen
yararlanılabilir.
Doğrusal Denklem Sistemleri
ax+by+cz+.......= r tipindeki a,b,c,....sayıları reel sayı olmak üzere bu şekilde yazılabilen denklemlere doğrusal (lineer) denklemler denir. Bu denklemlerin iki ya da daha fazlasının bir araya gelmesi ile oluşturulan denklem sistemine de lineer denklem sistemi adı verilir.
Basit düzeyde verilen lineer denklemlerin çözümleri yapılırken genellikle dört işlem kurallarından yararlanılarak çözüme gidilir. Yani verilen denklemler kendi aralarında uygun katsayılarla çarpıldıktan sonra taraf tarafa toplanır veya çıkarılarak istenen sonuç elde edilir.
İleri düzeyde hazırlanmış lineer denklem sistemlerinin çözümleri yapılırken lineer cebirden yararlanılarak matris kavramı ile çözüme gidilir. Bu tip denklemlerin çözümünde öncelikle denklemin genişletilmiş katsayılar matrisi yazılır daha sonra elemanter satır ve sütun işlemleri yoluyla her bir bilinmeyen bulunarak denklem sisteminin çözüm kümesi elde edilir.
Elemanter satır ve sütun işlemleri;
1) İki denklemin yerlerini değiştirmek R1==>R2
2) Herhangi bir denklemi bir reel sayı ile çarpmak 2R1==>R1
3) Verilen denklemlerden birini bir reel sayı ile çarpıp başka bir denkleme eklemek 3R1+R2==>R2
şeklinde üç temel esasa dayanır. Bu işlemlerde satır üzerinden yapılırsa satır yerine R1,R2, R3..ile, sütun üzerinden yapılırsa da sütun yerine L1, L2, L3.. yazılarak çözüm yapılır.
Kendiniz yaparken bu satır ve sütun ifadelerini yazmak zorunda değilsiniz sadece ne yapmanız gerektiğini bilmelisiniz. Ayrıca yaptığınız işlemlerin yukarıda yazılan üç maddelik elemanter satır/sütun işlemlerine uygun olmasına dikkat etmelisiniz.
Şimdi burada yazılanları örnekleyecek bir doğrusal denklem sistemi verip bunu matrisler yardımıyla ifade edelim ve örnek bir denklem sistemi çözümünü elemanter satır işlemleri ile yapalım.Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali&quo...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu f...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
Lütfen ilgili yazıların altında, yorumlarınızı bizimle paylaşınız. Kırık bağlantıları ve hatalı içerikleri mutlaka bildiriniz. Bizlere güzel dualar ederek destek olunuz...
KADİR PANCAR...