Üçgenin Kenarorta Dikmeleri

Üçgenin herhangi bir kenarının orta noktasından geçen ve bu kenara dik olan doğru parçasına "kenar orta dikme" denir. Üçgenin kenar orta dikmeleri bir noktada kesişir.  Bu kesişim noktası, üçgenin iç bölgesinde veya dış bölgesinde olabilir.
Üçgenin iç bölgesinde, üzerinde veya üçgenin dış bölgesinde orta dikmeler kesişebilir. Üçgen; dar açılı bir üçgen ise üçgenin iç bölgesinde, üçgen, dik açılı bir üçgen ise üçgenin üzerinde, üçgen; geniş açılı bir üçgen ise üçgenin dış bölgesinde orta dikmeler kesişir. 

Bir doğru parçasının orta dikmesi üzerinde alınan her nokta, doğru parçasının uç noktalarına eşit uzaklıktadır ve bunun karşıtı da doğrudur.

TEOREM:Orta dikmeler üçgenin köşe nktalarından geçmek zorunda değildir. Eğer bir üçgende herhangi bir kenara ait orta dikme, üçgenin köşesinden geçiyorsa bu üçgen ikizkenar üçgendir.

TEOREM: Orta dikmelerin kesim noktasından, üçgenin köşelerine birer doğru parçası çizildiğinde üç köşeye de çizilen doğru parçalarının uuznlukları birbirine eşit olur.
| | | | Devamı... 0 yorum

Üçgenin çevrel çemberi ve alanı

Herhangi bir üçgenin köşe noktalarından çizilen çembere üçgenin çevrel çemberi denir. Esasında çember üzerinde alınan üç farklı noktayı birleştiren doğru parçaları (kirişler) yardımıyla çember içinde bir üçgen oluşturulur. Çevrel çemberin merkezi üçgenin iç bölgesinde veya dış bölgesinde yer alabilir. Meydana gelen bu üçgenin alanını, çevrel çemberin yarıçapını kullanarak bulabiliriz. Çevrel çember yardımıyla üçgenin alanı hesaplanırken, üçgenin bütün kenar uzunlukları çarpılır ve çarpım sonucu çevrel çemberin yarıçapının dört katına bölünür. Bu şekilde üçgenin alanı bulunmuş olur. 

TEOREM: Bir üçgenin alanı, tüm kenar uzunluklarının çarpımının, çevrel çemberin yarıçapının dört katına bölümüne eşittir. 

İSPAT-1:İspatını yaparken üçgenin sinüs alan formülü kullanılarak ispat yapılabileceği gibi çember özellikleri ve benzerlik kullanılarak da ispatlama yapılabilir. Bunun için bir çember çizelim. Ve çember üzerinde üç farklı nokta alarak bir üçgen oluşturalım. 

Şekilde ABC üçgeni çizilmiştir. Üçgende B noktasından indirdiğimiz yüksekliğe h diyelim. Aynı zamanda, BO doğrultusunu uzattığımızda, O merkezli çemberde |BD| çapını elde etmiş oluruz. ABD üçgeninde A açısı çapı gördüğünden, çapı gören çevre açının ölçüsü 90 derece olur. Aynı yayı gören çevre açılar birbirine eşit olduğu için D açısı ile C açısı birbirine eşittir. (Çünkü D açısı da C açısı da AB yayını görüyor.) Bu açıların ölçülerini y olarak adlandıralım. Üçgenin iç açıları toplamı 180 derece olduğu için, BEC üçgenindeki B açısıyla, ABD üçgenindeki B açısı birbirine eşittir. Bu açılara da x diyelim. x+y=90 derece olur. Şekilden de görüldüğü gibi BEC ve BAD üçgenlerinin iç açıların ölçüleri birbirine eşittir. Yani bu iki üçgen arasında açı açı açı benzerliği (AAA Benzerliği) vardır. 

Benzelik teoremi gereğince bu iki üçgende, açıların gördükleri kenarların oranları birbirine eşit olduğundan, 90 derecenin gördüğü kenarların oranı ile, y açılarının gördükleri kenarların oranı birbirine eşit olur. Buradan, a/(2.R) oranının h/c oranına eşit olduğu görülür. Bu eşitlik düzenlenip h tek başına bırakıldığında; yüksekliği h=(a.c)/(2.R) olarak buluruz. ABC üçgeninde alan formülü olan taban uzunluğu ile yüksekliğin çarpımının yarısı formülü uygulandığında, taban uzunluğu b, tabana ait yükseklik h olmak üzere, Alan(ABC)= (h.b)/2 olur. h yerine yukarıda bulduğumuz eşitliği yazıp düzenlediğimizde, Alan(ABC)=(a.b.c)/(4.R) elde ederiz. 

İSPAT-2:Sinüs alan bağıntısı kullanılarak da aynı formül ispatlanabilir. Bunun için üçgenin sinüs alan formülü yazılır ve buradan sinüs teoreminden elde edilen eşitlik yerine yazılarak, çevrel çember alan ispatı yapılmış olur.


Kirişler Dörtgeni

Bir çember üzerinde yer alan iki farklı noktayı birleştiren doğru parçasına "kiriş" adı verilir. Çember üzerinde alınan dört farklı noktanın kirişler yardımıyla birleştirilmesiyle bir dörtgen meydana gelir. Köşe noktaları bir çember üzerinde buluna bu dörtgene "kirişler dörtgeni"  denir. 
Çemberin tüm ölçüsü derece cinsinden 360 derece olduğundan doğal olarak bir kirişler dörtgeninde, karşılıklı açıların ölçüleri toplamı 180° dir. 

TEOREM: Bir kirişler dörtgeninde, karşılıklı açıların ölçüleri toplamı 180° dir. 
İSPAT: Şekilde BCDE dörtgeni, çember üzerinde dört farklı noktanın kirişlerle birleştirilmesiyle oluştuğu için bir kirişler dörtgenidir. Bu dörtgende karşılıklı açılar olan B ve D açılarının ölçülerini inceleyelim. 

B açısının ölçüsüne x diyelim. Buna göre B açısının gördüğü yay olan CDE yayının ölçüsü; çevre açı özelliklerinden dolayı 2x ölçüsündedir. Aynı şekilde D açısının ölçüsüne y dersek, D açısının gördüğü yay olan CBE yayının ölçüsü; çevre açı özelliklerinden dolayı 2y ölçüsündedir. 
Çemberin tüm ölçüsü 360 derece olduğundan 2x+2y=360 ve buradan da x+y=180 derece olur. Yani B ve D açılarının ölçüleri toplamı 180 derece olur. Aynı şekilde C ve E açılarının da ölçüleri toplamı karşılıklı açılar olduğu için 180 derece olur.


TEOREM: Kirişler dörtgeninde kenar orta dikmeler çemberin merkezinde kesişir.  Kirişler dörtgenin bütün kenar orta dikmeleri çizildiğinde bunların kesişimi çemberin merkezini verir. Bu analitik düzlemde iki noktası verilen doğrunun eğimi ile diğer doğrunun eğimleri çarpımının -1'e eşit olmasından yararlanarak ispatlanabilir. Veya geometride eşlik ve benzerlik teoremleri yardımıyla da ispat gösterilebilir. Kirişler dörtgenin köşelerine doğru çizilen ikizkenar üçgenlerdeki yükseklik bağıntısından yararlanarak da ispatı gösterilir.

Karşılıklı açıları bütünler olan (biribirini 180 dereceye tamamlayan) dörtgenlerin, köşelerinden bir çember çizilebilir. Dikdörtgen, kare ve ikizkenar yamuk, karşılıklı açıları bütünler olduğu için kirişler dörtgenidir. Bu dörtgenlerin köşelerinden bir çember çizilebilir. 

KİRİŞLER DÖRTGENİN ALANI:
Kirişler dörtgeninde, alan hesaplamak için genellikle dörtgen iki üçgene ayrılarak, sinüs alan formülü kullanılır. Kirişler dörtgeninde herhangi bir köşegen çizilerek, dörtgen iki üçgene ayrılır. Sonra her iki üçgende de kirişlerin çarpımı (üçgenin kenarları) ve bu kenarların arasındaki açının sinüs değeriyle çarpılıp sonuç 2'ye bölünür. Bu bulunan sadece bir üçgenin alanıdır. Aynı işlem diğer parçadaki üçgen için de yapılır. Bu iki parça üçgenin alanları toplamı kirişler dörtgenin alanını verir.

Ancak kenarların arasındaki açıyı bilmiyorsak bu sinüs alan formülü kullanılmaz. Burada üçgendeki HERON alan formülü dörtgenler üzerinde genişletilerek alan hesaplamasında kullanılır. Dört kirişin uzunluğu bilinen bir kirişler dörtgeninin, kenar uzunlukları a, b, c, d olsun. Bu durumda çevre uzunluğu Ç=a + b + c + d olur. Çevrenin uzunluğunun yarısı; Ç/2 değeri u olsun. Yani u = (a + b + c + d)/2 olsun. Kirişler dörtgenin alanı Heron bağıntısı ile Alan = √[(u - a)(u - b)(u - c)(u - d)] şeklinde ifade edilir. Bu alan formülü trigonometrik oranlar kullanılarak ispat edilebilir. Bu formül, Öklid geometrisinde, Brahmagupta formülü olarak bilinir. Kenarların uzunlukları verilen herhangi bir kirişler dörtgeninin alanını bulmak için kullanımı kolaylık sağlar. (Bknz. Heron Alan Formülü İspatı)

TEOREM:
|DC|=|CE| olmak üzere DCE ikizkenar üçgeni alınsın. C köşesinden [DE] kenarını dik kesmeyen rastgele [AG ışını alalım. Bu ışın üzerinde, açıortay olacak biçimde mDFC=mCFE eşitliğini sağlayan bir tek F noktası vardır. Üstelik bu nokta, DCE ikizkenar üçgeninin çevrel çemberi üzerinde bulunur. Yani: DFEC dörtgeni kirişler dörtgenidir.  Teoremin ispatı yapılırken; DFC ve CFE üçgenlerinde ayrı ayrı sinüs teoremleri yazılıp bu eşitlikler birleştirilir. Aşağıdaki şekilde çizimi yapılmıştır.

Kirişler dörtgeni ile ilgili bazı sonuçlar şu şekildedir: Her ikizkenar yamuk aynı zamanda kirişler dörtgenidir. İkizkenar olmayan herhangi bir yamuk kirişler dörtgeni olamaz. Her dikdörtgen, aynı zamanda kirişler dörtgenidir. Her kare, aynı zamanda kirişler dörtgenidir. Dikdörtgen olmayan herhangi bir paralelkenar, kirişler dörtgeni olamaz.


En Çok Okunan Yazılar

Aşağıdaki Yazılar İlginizi Çekebilir!!!