Öteleme, Süsleme ve Örüntü Oluşturma

Öteleme nedir?
Bir nesnenin bir yerden başka bir yere belirli bir doğrultu ve yönde (sağ, sol, yukarı, aşağı) yaptığı kayma hareketi ötelemedir. Öteleme hareketi sonunda nesnenin geldiği yer, görüntüsüdür. Ötelemede şeklin duruşu, biçimi ve boyutları aynı kalır. Örneğin şeklimiz 3 birim yukarı, 4 birim sağa kaydırılacak ama yönü değişmeyecek sadece yer değiştirmiş olacaktır.
Örüntü nedir?
Belirli bir kurala göre art arda gelen eş veya benzer şekillerin oluşturduğu topluluğa örüntü denir. Farklı şekillerin biraraya gelerek oluşturdukları yeni şekildir. Örneğin, kağıttan birbirine eş bir sürü üçgen şeklini kestiniz. Bunlarla bulmaca gibi balık, kuş, ev, halı, kare, dikdörtgen gibi farklı desenlerde yeni şekiller meydana getirebilirsiniz. İşte bu oluşturduğunuz yeni şekillere birbiri ile anlamlı bir kural oluşturduğu takdirde örüntü adı verilir. Yalnız buradaki kestiğiniz üçgenlerin birbirine eş ve benzer olması gerekir. 

Süsleme nedir?
Bir düzlemin boşluk kalmadan ve şekiller üst üste gelmeden örüntü oluşturacak şekilde döşenmesidir. Süsleme yapılırken düzgün olan ya da düzgün olmayan çokgenler kullanılabilir. Çokgenler arasında boşluk kalmamalıdır. Üçgenle, kareyle, dikdörtgenle, düzgün altıgenle, düzgün sekizgenle süsleme yapılabilir. Arada boşluklar kalan cisimlerle süsleme motifleri oluşturulamaz. Şekiller öteleme hareketi ile döşenirse ötelemeli süsleme yapılmış olur. Örneğin okuldaki fayansların dizilişi, halı desenleri gibi.
Süsleme yapılabilmesi için, her bir köşede oluşan açıların ölçülerinin toplamı 360 derece olmalıdır.

Süslemenin Kodu Nasıl Bulunur?
Bir süslemede, her köşedeki düzgün çokgensel bölgelerin kenar sayıları süslemenin kodunu verir. Burada verilen süslemeli şeklin ortadaki köşelerinden birini belirleriz ve bu köşe etrafında oluşan şekillerin kenar sayısı ve kaç tane olduğuna göre kod yazarız.

Karelerden oluşan bir süslemede kod: 4,4,4,4 
(köşe etrafında 4 kenarlı 4 tane kare vardır anlamına gelir.)

Eşkenar üçgenlerden oluşan bir süslemede kod:3,3,3,3,3,3 
(köşe etrafında 3 kenarlı 6 tane üçgen vardır anlamına gelir.)

Düzgün altıgenlerden oluşan bir süslemede kod: 6,6,6 
(köşe etrafında 6 kenarlı 3 tane altıgen vardır anlamına gelir.)

Farklı çokgenler bir arada kullanılarak da süslemeler elde edilebilir. Bu durumda kullanılan çokgenlere göre süsleme kodu değişir. Hangi çokgenler kullanılmış ise bunların kenar sayılarına göre süsleme kodu sırayla yazılır.

Fraktal Nedir?

Fraktal; matematikte, çoğunlukla kendine benzeme özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit şekillerden çok farklıdır. Bunlar, doğadaki, Eukleidesçi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimli tanımlama yeteneğine sahiptir. Fraktal terimi “parçalanmış” yada “kırılmış” anlamına gelen Latince "fractus" sözcüğünden türetilmiştir.

İlk olarak 1975’te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır.

Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki,her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler,düzensiz biçimli olduklarından ötürü Eukleidesçi şekilleri ötelenme bakışına sahip değildirler. (Ötelenme bakışımına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)

Fraktalların bir başka önemli özelliği de, fraktal boyut olarak adlandırılan bir matematiksel parametredir. Bu cisim ne kadar büyütülürse büyütülsün ya da bakış açısı ne kadar değiştirilirse değiştirilsin, hep aynı kalan fraktalların bir özelliğidir. Eukleidesçi boyutun tersine fraktal boyut, genellikle tam sayı olmayan bir sayıyla, yani bir kesir ile ifade edilir. Fraktal boyut, bir fraktal eğri yardımıyla anlaşılabilir.

 
Kendine benzerlik ve tamsayı olmayan boyutlu kavramlarıyla birlikte fraktal geometri, istatistiksel mekanikte, özellikle görünürde rastgele özelliklerden oluşan fiziksel sistemlerin incelenmesinde giderek daha yaygın olarak kullanılmaya başlanmıştır. Örneğin, gökada kümelerinin evrendeki dağılımının saptanmasında ve akışkan burgaçlanmalarına ilişkin problemlerin çözülmesinde fraktal benzetimlerden (simülasyon) yararlanılmaktadır. 

İslam Kütüphanesi Seçmeler

Matematik Seçme Konuları

Aşağıdaki Yazılar İlginizi Çekebilir!!!