2.Dereceden Denklemler ÖSYS Soruları

İkinci Dereceden Denklem ve Eşitsizlikler ile ilgili ÖSYM tarafından geçmiş yıllarda üniversite seçme/giriş sınavlarındaki sorulardan yayınlanmış olan soruları incelemek için tıklayınız.

İkinci Derece Denklem ve Diskriminant

ax2+bx+c=0  biçimindeki denkleme ikinci dereceden bir bilinmeyenli denklem denir. Burada a, b, c sayılarına denklemin katsayıları, c ye ise sabit terim denir. Bu denklemi sağlayan x gerçek sayı değerleri varsa bunlara denklemin kökleri, köklerin kümesine de denklemin gerçek sayılar (reel sayılardaki) kümesindeki çözüm kümesi denir. Bu denklemin kökleri bulunurken arpanlarına ayrılabiliyorsa denklem çarpanlarına ayrılır. Ve herbir çarpan tek tek 0'a eşitlenerek kökler bulunur. Çarpanlarına kolay yoldan ayrılamayan ikinci derece denklemlerde ise kök formülü kullanılar kökler bulunur. ikinci dereceden bir bilinmeyenli bir denklemin iki farklı gerçek kökü olabileceği gibi bazen bir gerçek kökü olabilir, bazen de hiç gerçek kökü olmayabilir. Bu kök formülünde diskiriminant'a göre kökler reel veya karmaşık olarak karşımıza çıkar. Her iki durumda da aynı kök formülü kullanılarak çözüm kümeleri elde edilir.Rasyonel katsayılı ikinci dereceden bir bilinmeyenli bir denklemin kökleri de birbirinin eşleniği şeklindedir.

Kök formülünün nasıl ortaya çıktığını ispatlayalım.  Burada diskriminant'ın üç durumuna göre denklemin köklerinin farklılaştığı görülebilir.

Doğrusal Denklem Sistemleri (Matrislerle Çözüm)

Daha önceki konumuzda doğrusal denklem sistemlerinin çözümünü elemanter satır ve sütun işlemleri yardımıyla yapmıştık. (Bkz. Dogrusal Denklem Sistemleri) Buradaki sayfamızda verilen herhangi bir doğrusal denklemin gerekli şartları sağlamasıyla genişletilmiş katsayılar matrisinin tersi ile  denklem sisteminin genel çözümünü yapacağız.
 (x1 , x2 , . . . , xn ) sıralı n-lisinin lineer denklem sistemin bir çözümü olması için gerek ve yeter şart, bu sayıların oluşturduğu X matrisinin A.X=B matris denklemini sağlamasıdır. A matrisine denklem sisteminin katsayılar matrisi denir. Sistemin ilaveli (genişletilmiş) matrisinin katsayılar matrisi ile sağ taraf sabitleri matrisinin yan yana getirilmesiyle elde edilir.
Denklem sayısı değişken sayısına eşit olan bir doğrusal denklem sisteminin katsayılar matrisi bir kare matristir. Böyle bir sistemin bir ve yalnız bir çözümü olması için gerek ve yeter şart, sistemin ilaveli matrisinin indirgenmiş biçimindeki sütun sayısının sıfırdan farklı satır sayısından bir fazla olması, yani hiç sıfır satırı bulunmamasıdır ki bu, sistemin katsayılar matrisinin indirgenmiş biçiminin birim matris olmasına denktir. Bu durum katsayılar matrisinin tersinin var olmasına da denktir ve çözümün bulunmasında ters matristen yararlanılabilir. 
| | | Devamı... 1 yorum

Doğrusal Denklem Sistemleri

ax+by+cz+.......= r  tipindeki a,b,c,....sayıları reel sayı olmak üzere bu şekilde yazılabilen denklemlere doğrusal (lineer) denklemler denir. Bu denklemlerin iki ya da daha fazlasının bir araya gelmesi ile oluşturulan denklem sistemine de lineer denklem sistemi adı verilir.
Basit düzeyde verilen lineer denklemlerin çözümleri yapılırken genellikle dört işlem kurallarından yararlanılarak çözüme gidilir. Yani verilen denklemler kendi aralarında uygun katsayılarla çarpıldıktan sonra taraf tarafa toplanır veya çıkarılarak istenen sonuç elde edilir.
| | | Devamı... 3 yorum

Denklem Çözme Kavrama Testi

Denklem çözme kavramını daha iyi anlamak için çeşitli kitaplardan derlenerek hazırlanmış testimizi istifadenize sunuyoruz. 

Birinci dereceden denklem çözme, kavramını kazandırmak için oluşturulmuş test her öğrenci seviyesine hitap edecek şekilde rahatlıkla yapılabilecek sorulardan meydana gelmiştir.

Denklemler testini, ders ortamında 2 ders saati içinde (2*30dk) etkinlik olarak planlayabilirsiniz. Testi indirmek için tıklayınız...


| | | Devamı... 0 yorum

Dünyayı Değiştiren 17 Denklem

"Matematikçi Ian Stewart "Bilinmeyenin İzinde: Dünya'yı Değiştiren 17 Denklem" başlıklı kitabını yayımladı ve insanlığın tarihinde keşfedilen 17 matematiksel denklemi, bilimsel yoğunluğundan kurtararak, herkes tarafından anlaşılabilir bir hale soktu. Prof. Dr. Ian Stewart'a bu kitabını neden yazmaya karar verdiği sorulduğunda şöyle yanıt veriyor: 

"Denklemler kesinlikle sıkıcı olabilir ve çok karmaşık görünebilirler. Ancak bunun sebebi genellikle sıkıcı ve karmaşık bir şekilde sunulmalarındandır. Benim okullarımızdaki matematik öğretmenlerine göre bir avantajım var: Size toplamayı kendi başınıza nasıl yapacağınızı göstermeye çalışmıyorum. Denklemlerin nasıl çözüleceğini bilmeden de onların güzelliğini ve önemini takdir edebilirsiniz. Benim niyetim onları kültürel ve insani bir hale sokmak ve onları tarihimizdeki maskelerinden arındırmaktır. Denklemler, kültürümüzün önemli bir parçasıdır. Bu denklemlerin arkasındaki hikayeler, onları keşfedenler, onların yaşadıkları dönemler ve benzerleri oldukça etkileyicidir."

Önemli Not: Aşağıda kitapta yer alan denklemlerden 17 tanesinin ne anlama geldiği, tarihi, önemi ve modern dünyada nerelerde kullanıldığı ile ilgili örneklere değinilmiştir. Yazı metninin ana kaynağını şu adreste yer alan makaleden: (http://www.businessinsider.com/the-17-equations-that-changed-the-world-2012-7?op=1) orjinal diliyle inceleyebilirsiniz.Orjinal dilde yazılı metinden çeviri için aynen yararlanılan site: (http://www.evrimagaci.org/makale/18) adresidir. Bu adreste yer alan makalenin bazı bölümlerine sitemizde mevcut olan konu ile ilgili yazılarımızın bazı kısımlarının adresleri eklenerek okuyucuya daha fazla bilgiye ulaşma imkanı verilmeye çalışılmıştır.

1) Dik Üçgende Pisagor Teoremi

Ne Anlama Geliyor? 

Bir dik üçgende, en uzun kenarın (hipotenüsün) karesi, her zaman kısa kenarların karelerinin toplamına eşittir. Bu denklemde "a" ve "b" harfleri dik üçgenin kısa kenarlarını, "c" ise hipotenüsü (en uzun kenarı) temsil eder.


Tarihi Nedir?

Bu denkleme her ne kadar Pisagor ile ilişkilendirilse de, bu denklemi ispatlayan ilk kişinin kim olduğu halen kesin olarak bilinmemektedir. İlk net ispat Euclid tarafından yapılmıştır ve muhtemelen bu denklem Pisagor'dan 1000 yıl kadar önce Babilliler tarafından bilinmekteydi. Pisagorun yaşamı ve italya mektebi çalışmaları yazısı için: (Bkz. Arsimed Yüzeyleri ve çok yüzlüler) daha fazla bilgi elde edebilirsiniz.

Önemi Nedir?

Bu denklem, geometrinin temelinde bulunan denklemdir, cebir ile bağlantısını kurar ve trigonometrinin temelini oluşturur. Bu denklem olmaksızın isabetli bir şekilde haritacılık ve navigasyon yapılamazdı.

Modern Kullanımı Nedir?

Üçgenleme (triangülasyon) yöntemi sayesinde GPS ile yapılan navigasyonda noktalamalar ve kesin yer tayinleri yapılabilmektedir. Bunun haricinde mimaride, inşaat mühendisliğinde, adli bilimlerde merminin yolunun belirlenmesinde, depremlerin merkezinin tespitinde kullanılmaktadır.Üçgen şeklinde yer alan her türlü arazi ve alan hesaplamalarında ve uzunluk hesabında bu denklemden yararlanılmaktadır.

2) Logaritma Fonksiyonu ve Özellikleri

Ne Anlama Geliyor? 

Özellikle çok büyük sayılarla yapılacak çarpma işlemlerinin, belirli bir tabana göre logaritmik olarak yapıldığında, toplama biçiminde ifade edilebileceğini gösterir. Logaritmalar, "log" sembolüyle ifade edilirler ve genelde bu şekilde yazıldıklarında 10'luk tabandaki logaritma anlamına gelirler. Bu durumda, log(103) sayısı, 3 sayısına, yani 10'un üssü şeklinde ifade edilen sayının üssüne eşit olmaktadır. Bu sayede 1000 sayısı, 3 olarak ifade edilerek daha kolay biçimde işlem yapılabilir. Ancak logaritmaları farklı tabanlarla da kullanmak mümkündür. Örneğin log2(28) sayısı, 8'e eşittir. Böylece 256 sayısı 2'lik logaritma tabanında 8 olarak ifade edilebilir. Yukarıdaki denklem, bu şekilde büyük sayıların birbiriyle çarpımında, logaritmanın kullanılarak çarpma gibi devasa sonuçlar verebilen bir işlemi toplama gibi daha ufak sonuçlar verebilen ve daha hızlı yapılabilen bir hale dönüştürebileceğimizi gösteriyor. Burada "x" ve "y" harfleri herhangi iki sayıyı ifade ediyor. Üslü ifadelerin yetersiz kaldığı durumlarda logaritma özellikleri bir başvuru aracı durumunda olmuştur.

Tarihi Nedir?

Konsept ilk olarak Merchiston'dan bir İskoç bilim insanı John Napier tarafından keşfedildi. Napier, büyük sayıların çarpımının çok zor ve uğraştırıcı olduğunu fark etti ve bunları kolay ve hızlı bir şekilde yapabilmeyi hedefledi. Geliştirdiği sistem sonradan Henry Briggs tarafından tablolaştırıldı ve çok daha güçlü bir araç haline geldi.

Önemi Nedir?

Logaritmanın keşfi tek kelimeyle devrimdi. Bu sayede mühendisler ve astronomlar hesaplamaları çok daha hızlı yapabilmeye başladılar. Günümüzde bilgisayarların keşfiyle bu devrim önemsiz kalmıştır; ancak yine de bugünlere gelebilmemiz için bilim insanları açısından önemlidir.

Modern Kullanımı Nedir?

Logaritmalar halen radyoaktif bozunum gibi çok önemli konularda kullanılmaktadır. Aslında logaritmalar, zamana bağlı değişimlerin (azalma veya artma) olduğu hemen her alanda karşımıza çıkarlar. Örneğin banka kredilerinin üzerine eklenecek faizlerin hesabında logaritma fonksiyonları kullanılabilmektedir. Bunun haricinde biyologlar popülasyonlar üzerinde çalışırken, fizikçiler nükleer tepkimeler üzerinde çalışırken, kimyagerler zincir tepkimeleri üzerinde çalışırken, bankacılar yatırımları üzerinde çalışırken logaritmaları kullanmaktadır. Ayrıca fizyologlar tarafından gözün ışığa verdiği tepkiyi ölçmekte kullanılır. Son olarak, özellikle makina ve elektrik mühendisleri tarafından sinyallerin ve titreşimlerin zaman içerisinde sönümlenmesinin hesabında kullanılmaktadır. Bilgisayar mühendisleri de bir yazılımın ne kadar hızlı çalışacağını hesaplamak için logaritmalara başvururlar. 

3) Kalkülüs'ün Temel Teoremi (Türev Tanımı)

Ne Anlama Geliyor? 

Bir değerin zaman içerisindeki sonsuz küçüklükteki değişimlerinin birikerek, o değerin belli bir zamandaki toplam değişimine eşit olacağını gösterir. Bir diğer deyişle, değişim içerisindeki bir fonksiyonu, çok çok küçük zaman aralıklarında değerlendirecek ve bu değişimleri toplayacak olursak, bu değişimlerin toplamının, genel değişim toplamına eşit olacağını gösteren denklemdir. Burada "f" harfi değişimini incelediğimiz fonksiyonu, "t" harfi ise hangi değişkene göre değişimin izlendiğini göstermektedir. "t", genellikle zamanı ifade eder, dolayısıyla "f" fonksiyonunun zamana göre değişimi incelenir. Bunu ifade eden denklemin sol tarafı, fonksiyonun zamana göre türevinin alındığını gösterir. Denklemin sağ tarafındaki "t" yine zamanı, "f(t)" yine zamana bağlı olan herhangi bir fonksiyonu ifade eder. "h" ise küçük bir değişimi temsil etmektedir, dolayısıyla "f(t+h)", elimizdeki fonksiyonun "t" anından çok az bir zaman sonraki halini ifade etmek için kullanılır. Bu "çok az bir zaman farkını" anlatmak için ve fonksiyonun o ufak değişimini ifade etmek için matematiksel limit kullanılır ve "lim" ile gösterilen budur. Matematikte bu durum çok iyi bir şekilde bilinen türev kavramının limit ile ifadesi anlamına gelmektedir. Kısacası türevin temel tanımı olarak karşımıza çıkar.

Tarihi Nedir?

Günümüzde bildiğimiz Kalkülüs 17. yüzyılda Isaac Newton ve Gottfried Leibniz tarafından geliştirilmiştir ve günümüzde Dünya'nın her yerinde aynı şekilde ifade edilir. Bu denklemin keşfiyle ilgili uzun yıllar bilgi hırsızlığı (intihal) iddialarında bulunulmuştur. Ne yazık ki halen bu denklemin gerçek sahibine karar verilememiştir. Bu sebeple bu iki bilim insanının da bakış açılarını ve dehalarını bu denklemi anmak için kullanıyoruz.

Önemi Nedir?

Ian Stewart'a göre bu denklemin önemi şöyledir: "Diğer bütün matematiksel tekniklerden öte, bu denklem modern dünyayı meydana getirmiştir." Kalkülüs, katı cisimleri, eğrileri ve alanları ölçmekte ve anlamakta kullandığımız temel araçtır. Birçok doğa kanununun temelinde yer alır ve diferansiyel denklemlerin kaynağıdır. Bu türev tanımını kullanarak çeşitli fonksiyonların türevlerini veren ifadeleri de rahatlıkla ispatlayabiliriz. Örnek olarak sinüs fonksiyonun tüevini bu tanım yardımıyla bulabiliriz. Örnek sinüs ve cos fonksiyonları türevleri için: (Bkz. Sinüs ve Cosinüs Fonksiyonları Türevleri ve İspatları) adresinden geniş bilgi alabilirsiniz.

Modern Kullanımı Nedir?

En uygun çözümün gerektiği her türlü problemde kullanılır. Tıp, ekonomi ve bilgisayar bilimleri için temeldir. Mühendisler tarafından GPS sistemlerinin geliştirilmesinde, gökdelenlerin ve köprülerin inşasında, robotların parçalarının belirli emirlere nasıl tepki vereceğinin analizinde, sistem tasarımında, araçların güvenliğinin geliştirilmesinde kullanılmaktadır. Biyologlar tarafından ekosistem içerisindeki türlerin değişiminde, ilaçların vücut içerisindeki derişiminin hesaplanmasında, anatomik ve fiziksel özelliklerin (kemik uzunluğu gibi) belirlenmesinde, bakteri gibi türlerin çoğalma hızlarının tespitinde kullanılır. Ekonomide pazar tahminlerinde, gelir düzeylerinin belirlenmesinde, problemlerin en uygun çözümlerinin geliştirilmesinde, aylık ödeme miktarlarının belirlenmesinde kullanılır. Bunlar haricinde anket sonuçlarının değerlendirilmesinde, hastalıkların ilerleme hızının tespitinde, küresel haritalandırma yöntemlerinin geliştirilmesinde, paradoksal sorunların çözülmesinde yer alır.

4) Newton'un Evrensel Çekim Yasası

Ne Anlama Geliyor? 

Evrendeki her bir cismin, her bir diğer cismi kütlesiyle doğru, aralarındaki uzaklığın karesiyle ters orantılı olarak kendine doğru çektiğini gösteren denklemdir. Kısaca, evrendeki cisimler arasındaki çekim kuvvetini hesaplamak için kullanılır. Sol taraftaki "F", cisimlerin her birine etkiyen kuvveti gösterir. "G", evrensel kütleçekim sabitidir ve yaklaşık olarak 6.67 x 10-11 N(m/kg)2 değerine sahiptir. "m1" ve "m2", incelenen iki cismin kütlelerini ifade eder. "d" ise, iki cisim arasındaki dik uzaklıktır.

Tarihi Nedir?

Isaac Newton bu çalışmasını kendisinden önce Johannes Kepler'in yaptığı çalışmalar üzerine kurmuştur. Bir ihtimal, Robert Hooke'un çalışmalarından faydalanmış ve bir miktar intihal yapmış olabilir.

Önemi Nedir?

Dünya'nın nasıl çalıştığını anlamamızı sağlar ve kalkülüsü kullanır. Her ne kadar sonradan Einstein'ın görecelik teorisi tarafından gölgede bırakıldıysa da, halen cisimlerin birbirleriyle nasıl etkileştiği konusunda bilgi edinmemizi sağlar. Günümüzde uyduların ve sondaların yörüngelerini tasarlamak için kullanılmaktadır.

Modern Kullanımı Nedir?

Yeni uzay görevleri başlatıldığında, en uygun kütleçekimsel tüplerin (veya yolakların) bulunmasını sağlar ve bunların enerji bakımından en verimli olmasını hedefler. Ayrıca uydu kanallarının televizyonlarımızda görünebilmesini sağlar. Bunun haricinde gezegenlerin hareketlerinin tahmininde kullanılır ve bu yöntemle yapılan Neptün'ün keşfi Nobel Ödülü getirmiştir. Ayrıca bu yasa kullanılarak gelgitler ve miktarları belirlenir. Son olarak, birçok füze ve uydu sistemlerinin analizi bu denklem ile yapılır.

5) Karmaşık Sayılar (Kompleks Sayıların) Kökeni

Ne Anlama Geliyor? 

Sanal (kompleks, karmaşık) bir sayının karesinin negatif olacağını gösterir. Buradaki "i" bir sayıdır ve her zaman "-1" sayısının kareköküne eşittir. Normalde, lise sıralarında negatif sayıların karekökü olmaz." diye öğretilse de, bu ifade tam olarak doğru değildir. Negatif sayıların karekökü, karmaşık sayılar verir. Reel sayılarda negatif bir sayının çift dereceli kökü olmadığından reel sayılar kümesi sanal birim oluşturularak genişletilme gereği duyulduğundan karmaşık sayılar inşa edilmiştir. i sanal biriminin kuvvetlerine göre artık reel sayıları da içerisine alan daha geniş bir sayı kümesi karmaşık sayılar elde edilmiş olur.

Tarihi Nedir?

Hayali sayılar aslında ilk olarak kumarbaz matematikçi Girolamo Cardano tarafından ileri sürülmüştür. Daha sonradan Rafael Bombelli ve John Wallis tarafından geliştirilmiştir. William Hamilton tarafından kesin tanımları yapılana kadar garip bir sorun olarak matematikte kalmışlardır.

Önemi Nedir?

Stewart'a göre: "Elektrik ışıklandırmalarından dijital kameralara kadar birçok modern teknoloji bu sayılar olmadan icat edilemezdi." Hayali sayılar, karmaşık analizlerde kullanılır ve bunlar da, mühendislerin çalışma alanındaki pratik sorunların çözülmesinde kullanılır.

Modern Kullanımı Nedir?

Elektrik mühendisliğinde ve karmaşık matematik teorisinde yoğun olarak kullanılır. Elektrik mühendisliği dahilinde bir devre elemanının verilen bir zamandaki durumunu belirlemek amacıyla kullanılabilir. Bunun haricinde elektromanyetik kuram dahilinde, elektrik alan kuvveti ile manyetik alan kuvvetini ifade etmekte kullanılır. Ayrıca akışkanların bir cisim etrafındaki hareketini tanımlarken karmaşık analizler gerekir ve burada bu sayılar devreye girer. Benzer şekilde, ekonomik sistemlerin davranışlarının analizinde bu sayıların kullanılması gerekir. 

6) Euler'in Çokyüzlü Katı Cisimler Formülü

Ne Anlama Geliyor? 

Bir uzayın, yöneliminden bağımsız olarak şeklinin ve yapısının tanımlanmasını sağlar. Yukarıdaki denklemde "F", bir çok yüzlü geometrik şeklin "yüz" sayısını, "E" aynı şeklin "kenar" sayısını, "V" ise aynı şeklin "köşe" sayısını ifade eder. Denkleme göre, yüz sayısı ile köşe sayısının toplamından kenar sayısını çıkarırsanız, hangi şekli inceliyor olursanız olun 2 sayısını elde edersiniz. Bir kübü düşünelim: 6 yüzü, 8 köşesi ve 12 kenarı vardır. Yukarıdaki denkleme koyacak olursanız, 6-12+8 işleminin sonucu 2'dir ve denklem sağlanır. Bunu her geometrik şekil ile deneyebilirsiniz.

Tarihi Nedir?

İlk olarak Descartes tarafından tanımlanan bu ilişki, sonradan Leonhard Euler tarafından 1750 yılında gözden geçirilmiş, ispatlanmış ve yayımlanmıştır. Platon cisimleri de denilen çok yüzeylilerdeki bu kenar köşe ve yüz sayıları arasındaki ilişkiyi Euler modern anlamda ispatlayarak eserlerinde neşretmiştir. 
Platon cisimleri için ayrıntılı bilgi: (Bkz. Platon-cisimleri) 
Euler Formülü kullanım örnekleri için: (Bkz. Çok yüzlü cisimler için Euler Formülü) 
Arşimed Yüzeyleri: (Bkz. Arşimed Yüzeyleri ve Çok yüzlüler) adreslerini inceleyebilirsiniz.

Önemi Nedir?

Topografi (yüzey bilimi) açısından temel öneme sahiptir. Bu bilim dahilinde herhangi bir geometri sürekli yüzey olarak ifade edilir. Aynı zamanda mühendisler ve biyologlar için önemlidir.

Modern Kullanımı Nedir?

Topoloji, DNA'nın davranışını ve fonksiyonlarını anlamakta kullanılmaktadır. Bunun haricinde, topoloji sayesinde robotik alanında kullanılan sensörlerin isabetliliği arttırılmıştır.

7) Normal Dağılım

Ne Anlama Geliyor? 

Özellikle istatistik alanında sıkça kullanılan normal dağılım eğrisinin formülize edilmiş halidir. Standart normal dağılımı tanımlar. Bu dağılım, bir çan eğrisi şeklinde gözükür ve bir gözlem olasılığının en muhtemel olarak ortalama civarında olduğunu ifade eder. Ortalama değerden uzaklaştıkça o olayın görülme olasılığı azalır. Denklemde sol taraf, dağılım fonksiyonunu göstermektedir. Buradaki "1 bölü karekök içerisinde 2 çarpı pi'nin" varlığı, sol taraftaki fonksiyonun altında kalan alanın 1'e eşit olmasını sağlar. Karekök içerisindeki diğer harf olan "sigma", "standart sapma" ifadesidir. Sonrasında bu ifade, eksponansiyel ("e" üzeri olarak gösterilir) bir sayı ile çarpılmaktadır. Bu sayı içerisindeki "x" fonksiyonumuzun değişkenini, parantez içerisinde "x"ten çıkarılan "mü" sayısı ise "ortalama" değeri ifade eder. Geri kalanı, izah edilen değişkenlerle aynıdır. 

Tarihi Nedir?

İlk olarak Blaise Pascal tarafından geliştirilen sistem sonradan Bernouilli tarafından son hali verilmiştir. Bugünkü çan eğrisi ise Belçikalı matematikçi Adolphe Quetelet tarafından tanımlanmıştır.

Önemi Nedir?

Modern istatistiğin temelindeki denklemdir. Bilim ve özellikle sosyal bilimler, bu denklem olmadan bugünkü halini alamazdı.

Modern Kullanımı Nedir?

İlaçların, klinik deneylerde, negatif etkilerine karşılık yeterince etkili olup olmadıklarını anlamak için kullanılır. Bunun haricinde özellikle üniversite öğrencilerinin sürekli olarak yarışmaları gereken bir dağılım eğrisi çıkarılmasını sağlar. Genel olarak, dağılımların olduğu her yerde çan eğrileri kullanılabilir. Evrimsel biyoloji dahilinde, popülasyonları modellemek ve evrimsel değişim yönlerini analiz etmek amacıyla çan eğrilerine başvurulur.

8) Dalga Denklemi

Ne Anlama Geliyor? 

Dalgaların davranışlarını tanımlayan diferansiyel denklemdir. Esasında bir keman telinin titreşimini tanımlamak için geliştirilmiştir. Burada, sol taraftaki "u", genelde zamana ve konuma bağlı olan bir fonksiyonu ifade eder. "t", zamanı gösterir. Soldaki ifadenin tamamı ise, "u" fonksiyonunun zamana bağlı olarak ikinci türevidir. Sağ tarafta yer alan "c", denklemin başlangıç koşulları tarafından belirlenen, herhangi bir sabittir. Sonraki ifade ise, aynı "u" fonksiyonunun bu defa zamana göre değil, "konuma" göre, yani "x" harfine göre ikinci türevidir. Kimi zaman bunun yerine Laplasyen formda da yazılabilir. O zaman, Laplace operatörü olan ters üçgen işareti koyulur.

Tarihi Nedir?

Matematikçi Danielle Bernouilli ve Jean D'Alambert tarafından 18. yüzyılda keşfedilmiştir. İkili, aynı denklemi birbirlerinden biraz farklı olarak tanımlamışlardır.

Önemi Nedir?

Dalgaların davranışı, seslerin nasıl çalıştığına, depremlerin nasıl oluştuğuna ve okyanusların davranışlarına genellenebilmektedir.

Modern Kullanımı Nedir?

Petrol firmaları patlattıkları patlayıcılardan yayılan ses dalgalarını ölçerek jeolojik oluşumları tespit etmektedirler. Bunun haricinde müzik aletlerinin ve televizyonların yapılabilmesini ve geliştirilmesini sağlamaktadır. Evlerimizde kullandığımız mikrodalga fırınları mümkün kılmıştır. Günümüzde birçok tür elektromanyetik dalgaları kullanarak yönlerini, avlarını ve avcılarını tespit eder. Ayrıca sonarlar gibi engel ve yüzey tespit aletlerinin üretilebilmesini mümkün kılmıştır. Kısaca dalgaların olduğu her alanda geniş ufuklar açmıştır.

9) Fourier Dönüşümü

Ne Anlama Geliyor? 

Zamana bağlı fonksiyonları, frekansa bağlı olarak tanımlamaya yarar. Burada, sol taraf dönüşümün sonucunu gösteren fonksiyondur (ancak burada fonksiyonun tersi olarak yazılır) ve "xi" harfi, frekansı ifade eder. Sağ tarafta, eksi sonsuzdan artı sonsuza kadar integral alınmaktadır. İntegrali alınan fonksiyon, genellikle zamana bağlı olarak ifade edilen ve frekansa bağlı ifadesini aradığımız fonksiyondur ve "f(x)" olarak gösterilir. Yani bu durumda, "x" genellikle zamanı belirtir. Geri kalan ifadeler ise, bildiğimiz "pi" sayısı, "i" karmaşık sayısı, "x" değişkeni ve "xi" frekansıdır. "dx" ise integralin değişkenini belirtmektedir.

Tarihi Nedir?

Joseph Fourier bu denklemi meşhur ısı denkleminden genişleterek çıkarmıştır. Bu denklemi daha önceden dalga denklemi olarak anılmaktaydı.

Önemi Nedir?

Bu denklem sayesinde karmaşık şablonlar basitleştirilebilir, temizlenebilir ve analiz edilebilir. Birçok sinyal analizi alanında önem taşımaktadır.

Modern Kullanımı Nedir?

Bilginin JPEG formatında saklanabilmesini ve moleküllerin yapısının keşfedilebilmesini sağlamaktadır. Optik görüntülerin, müzikal enstrümanların, kuantum mekanik sistemlerin anlaşılabilmesinde ve analizinde kullanılır. Ayrıca sinyal analizinde, ışık deneylerinde ve yüzey akımlarının radyasyonunun tespitinde geniş olarak kullanılır.

10) Navier-Stokes Denklemi

Ne Anlama Geliyor? 

Denklemin sol tarafı küçük miktarda bir akışkanın ivmesidir, sağ tarafı da üzerine etki eden kuvvetleri belirler. Dolayısıyla bu denklem, Newton'un İkinci Yasası'nın akışkanlara genişletilmiş bir versiyonudur. Bu denklemde sol taraftaki ilk harf olan "ro", akışkan yoğunluğunu gösterir. Parantez içerisindeki "del v bölü del t" olarak okunan ifade, akışın hızının zamana göre değişimi, yani akışın ivmesidir. Parantez içerisindeki ikinci terim, akışın hızı ile akışın gradyanını (değişim vektörünü) birbiriyle çarpan ifadedir. Denklemin sağ tarafındaki ters üçgen, del operatörüdür. İlk terimde akışın basıncının del operatörü ile çarpımı alınır. Sonrasında ise aynı işlem, toplam stres tensörü ile yapılır ve sonunda bu iki terimin toplamına "f" ile ifade edilen vücut kuvvetleri eklenir.

Tarihi Nedir?

Leonhard Euler bir akışkan hareketini tanımlamaya çalışan ilk kişi oldu, ancak denkleme son halini Fransız mühendis Claude-Louis Navier ve İrlandalı matematikçi George Stokes vermiştir.

Önemi Nedir?

Bilgisayarlar bu denklemi çözebilecek kadar güçlü hale geldiğinde, fizik alanında karmaşık ve çok faydalı alanların açılmasını sağlamıştır. Özellikle araçların daha aerodinamik olarak üretilebilmesini mümkün kılmıştır.

Modern Kullanımı Nedir?

Birçok diğer teknoloji ile birlikte, modern yolcu jetlerinin yapılabilmesini sağlamıştır. Bunun haricinde akışkanların düzgün ve türbülanslı bir biçimde hareketinin analizinde kullanılır. Bu sayede, içerisinde akışkanların hareketini barındıran her türlü teknolojinin geliştirilebilmesini mümkün kılmıştır.

11) Maxwell Denklemleri

Ne Anlama Geliyor? 

Elektrik ve manyetik alanlar arasındaki ilişkiyi gösterir. Bu denklemlerde "E" elektrik alanını, "H" (veya kimi kaynakta "B") manyetik alanı ifade eder. Yine "del" operatörü kullanılarak nokta (dot) ve çarpı (cross) çarpımları yapılmaktadır (bunlar vektörlerin birbiriyle çarpım biçimleridir). Denkleme göre del operatörü ile yapılan nokta çarpımı elektrik alanı için "ro" ile gösterilen elektrik yükü yoğunluğunun "epsilon sıfır" ile gösterilen dielektrik sabitine bölümüdür. Buna Gauss Yasası da denir. Aynı işlem manyetik alan için yapılacak olursa, sıfır elde edilir. Buna Gauss'un Manyetik Yasası da denir. Çarpı çarpımının sonucu ise görselin sağ tarafında gösterilen denklemleri verir ve elektrik alanı ile yapılan çarpım manyetik alanın zamana göre değişimini verir. Buna Faraday'ın Endüksiyon Yasası veya Maxwell-Faraday Denklemi de denir. Manyetik alana göre yapılan çarpım ise daha karmaşık bir denklem olan Amper'in Devre Yasasının Maxwell Doğrulaması olarak bilinen denklemi doğurur. Burada denklemin sağ tarafında "mü sıfır" olarak gösterilen boş uzayın geçirgenliği, "J" olarak gösterilen akım yoğunluğu, diğerleri ise daha önce bahsedilen özelliklerdir.

Tarihi Nedir?

Elektrik ve manyetik alanları birleştirmeye çalışan ilk kişi Michael Faraday'dır ve bu çabası ilk olarak James Clerk Maxwell tarafından denkleme dönüştürülmüştür. Bu keşif, fiziği temelden değiştirmiştir.

Önemi Nedir?

Elektromanyetik dalgaların tahmin edilmesini ve daha iyi anlaşılmasını sağlamıştır. Bu sayede, günümüzde kullandığımız birçok teknoloji mümkün olmuştur.

Modern Kullanımı Nedir?

Radar, televizyon ve modern iletişim bu denklem sayesinde mümkün olmuştur. Özellikle cep telefonu sinyallerinin dağıtımı ve ulaştırılmasında etkili olan bir denklemdir.

12) Termodinamik'in İkinci Yasası

Ne Anlama Geliyor? 

İzole bir sistemin entropisinin (düzensizliğinin) asla azalamayacağını ve düzensizliğin sisteme enerji akışı olmadığı sürece daima artmak zorunda olduğunu gösteren denklemdir. Tüm sistemlerin termodinamik denge hali olan maksimum düzensizlik haline evrimleşmek zorunda olduğunu gösterir. Denklemdeki "dS" ifadesi, entropinin zamana bağlı değişimini ifade eder ve bu değişim her zaman pozitif olmak zorundadır. Yani karmaşıklık (düzensizlik) daima artar.

Tarihi Nedir?

Sadi Carnot, doğada geri döndürülebilir bir sürecin olmadığını keşfeden ilk kişidir. Matematikçi Ludwig Boltzmann bu yasayı geliştirmiştir ve William Thomson resmi olarak ilan etmiştir.

Önemi Nedir?

Enerjiyi ve evreni entropi (kaos, düzensizlik) çerçevesinde anlamamızı sağlayan denklemdir. Isıdan elde edebileceğimiz iş miktarını anlamamızı sağlamış, daha iyi buharlı makineler üretebilmemizi sağlamıştır.

Modern Kullanımı Nedir?

Maddenin atomlardan oluştuğunu ispatlamamızı sağlamıştır. Bu bile yeterli bir kullanım alanıdır; ancak bunun haricinde, otomobil motorlarının, buzdolaplarının geliştirilmesini sağlamıştır. Üstelik canlı-cansız sistemlerinin doğal davranışlarını anlamamızı ve canlılığın öncelikle cansızlıktan nasıl evrimleştiğini ve bunu nasıl sürdürdüğünü, sonrasında ise canlılığın açık sistemlerde kendi içerisinde nasıl evrimleşebileceğini anlamamızı sağlamıştır. Bu sayede evrene ve doğaya bakış açımızı değiştirmiştir. Bunun haricinde birçok kimyasal tepkimenin hangi ortam koşullarında, nasıl ve ne biçimde gerçekleştiğini anlayabilmemizi sağlamıştır. Isı ve enerji akışının olduğu her sistemin analizini mümkün kılmıştır.

13) Einstein'ın Görecelik Teorisi

Ne Anlama Geliyor? 

Enerjinin, kütle ile ışık hızının karesinin çarpımına eşit olduğunu gösterir. Denklemin sol tarafındaki "E", enerjiyi ifade eder. Sağ tarafındaki "m" cismin kütlesini, "c" ise ışık hızını gösterir.

Tarihi Nedir?

Fiziğin içinden olmayan insanlar için daha az bilinen bir hikaye, Einstein'ın meşhur denkleminin Albert Michenson ve Edward Morley tarafından yapılan bir deneye dayanmasıdır. Bu deneyde ışığın referans düzlemleri açısından Newton fiziği ile açıklanamayan bir şekilde hareket ettiği gösterilmiştir. Einstein bu keşfin üzerinden giderek 1905 yılında özel görecelik, 1915 yılında genel görecelik kuramlarını ileri sürmüştür.

Önemi Nedir?

Muhtemelen insanlık tarihinin en meşhur denklemidir. Madde ve gerçeklik ile ilgili tüm görüşlerimizin değişmesini sağlamıştır. 

Modern Kullanımı Nedir?

Nükleer silahlarda, GPS cihazlarında kullanılmaktadır. Günlük yaşamda teknolojik açıdan doğrudan çok fazla çıkarımı olmasa da, evrene bakışımızı değiştirmesi açısından büyük öneme sahiptir. Zaman ve uzayla ilgili algımızı yeniden yaratmış, zamanın bile farklı referans noktaları için farklı değerlere sahip olabileceğini, hiçbir şeyin mutlak olarak ölçülemeyeceğini ispatlamıştır.

14) Schrödinger Denklemi

Ne Anlama Geliyor? 

Maddeyi bir parçacık yerine dalga olarak modellemeye yaramaktadır. Denklemin sl tarafındaki ifadede "i" karmaşık sayıyı, "çizgili h" indirgenmiş Planck sabiti olan 1.054x10-34 J.s değerini, "t" zamanı gösterir. Bu ifadeden çıkarılan "psi" harfi ise dalga fonksiyonunu ifade eder. Denklemin sağ tarafındaki "şapkalı H" ise Hamiltonyen operatördür ve bu durumda, dalga fonksiyonunun toplam enerjisini ifade eder ve duruma göre farklı sonuçlar verebilir.

Tarihi Nedir?

Louis-Victor de Broglie maddenin ikili yapısını 1924 yılında göstermiştir. Bu denklem ise Erwin Schrödinger tarafından 1927 yılında geliştirilmiştir ve Werner Heisenberg gibi fizikçilerin bulguları üzerine kuruludur.

Önemi Nedir?

Küçük boyutlardaki fizik algımızda devrim yaratmıştır. Parçacıkların belirli olasılık düzeylerinde bulunduğunu keşfetmemiz, fiziğe tamamen yeni bir yön vermiştir.

Modern Kullanımı Nedir?

Yarıiletkenler ve transistörlerde kullanılır. Bu sebeple modern bilgisayar teknolojilerinin temelinde yer alır. Ayrıca maddenin atomik yapısının net olarak anlaşılabilmesine imkan sağlamıştır. Dalga mekaniğinin en güçlü araçlarından biri bu denklemdir.

15) Shannon'un Bilgi Teorisi

Ne Anlama Geliyor? 

Bir kodun bileşen sembollerinin olasılıklarından yola çıkarak o kod içerisindeki veri miktarını tahmin etmeye yarayan denklemdir. Denklemde sol tarafta yer alan ve "H" harfi gibi gözüken ama Yunan harflerinden biri olan "eta", entropiyi (düzensizliği) simgeler. Denklemin sağ tarafındaki büyük E gibi gözüken ifade, seri toplama ifadesidir. p(x) incelemekte olan fonksiyonu gösterir ve bu fonksiyon, seri toplama ifadesi altında aynı fonksiyonun logaritmasıyla çarpılmaktadır.

Tarihi Nedir?

Bell Laboratuvarları mühendislerinden Claude Shannon tarafından 2. Dünya Savaşı sırasında geliştirilmiştir.

Önemi Nedir?

Stewart'a göre: "Bilgi çağını başlatan denklem bu olmuştur." Mühendislerin çok verimli kodlar aramasına engel olarak, CD'lerden tutun da dijital iletişime kadar birçok teknolojiyi mümkün kılmıştır.

Modern Kullanımı Nedir?

Kodlar içerisinde hataların bulunabileceği hemen her yerde kullanılmaktadır.

16) Popülasyon Büyümesinin Lojistik Modeli

Ne Anlama Geliyor? 

Bir türe ait popülasyonun nesiller içerisinde, kısıtlı kaynaklar dahilinde nasıl değişeceğini tahmin etmemizi sağlar. Denklemin sol tarafı verilen bir popülasyon büyüklüğünün belli bir zaman sonraki değerini ifade eder. Denklemin sağ tarafındaki "k" harfi popülasyonun büyüme oranını, "xt" ise birim zamanda popülasyonun büyümesinin, popülasyonun taşıma kapasitesine bölümünden elde edilen sonuçtur.

Tarihi Nedir?

Popülasyon büyümesinin kaosa neden olabileceğini ileri süren ilk kişi 1975 yılında Robert May olmuştur. Vladimir Arnold ve Stephen Smale gibi matematikçilerin çalışmaları sayesinde bu kaosun diferansiyel denklemlerle ifade edilebileceği anlaşıldı.

Önemi Nedir?

Kaos teorisinin geliştirilebilmesini sağlamıştır. Bu da, doğal sistemlerin nasıl işlediğine dair anlayışımızı tamamen değiştirmiştir.

Modern Kullanımı Nedir?

Yer ve hava olaylarının araştırılmasında özellikle depremlerin modellenmesinde ve hava durumunun tahmin edilmesinde kullanılmaktadır.

17) Black-Scholes Modeli

Ne Anlama Geliyor? 

En risksiz biçimde fiyatın belirlenmesini ve bu belirlenen fiyatın ara kazanç fırsatı olmadan doğru fiyat olmasını sağlayan denklemdir. Denklemdeki "sigma" bir malın fiyatlarındaki dalgalanmayı, "S" malın fiyatını, "V" zamana ve mal fiyatına bağlı bir fonksiyonu, "r" yıllık risksiz faiz miktarını belirtir. Denklemde karmaşık bir türev hesabı yapılarak fiyatlar belirlenmeye çalışılmaktadır.

Tarihi Nedir?

İlk olarak Fischer Black ve Myron Scholes tarafından geliştirilmiştir ve sonrasında Robert Merton tarafından genişletilmiştir. Bu ikili, keşifleri sayesinde 1977 yılında Nobel Ekonomi Ödülü'nü almışlardır.

Önemi Nedir?

Günümüzde trilyon dolarlarla ifade edilebilen pazarların kurulmasını mümkün kılmıştır. Bu denklemlerin ve türevlerinin kötüye kullanımının ekonomik krize neden olduğu iddia edilmiştir. Bu denklemlerin, gerçek piyasada geçerli olmayan varsayımlarda bulunduğu bilinmektedir.

Modern Kullanımı Nedir?

Bu denklem ve türevleri halen ürünlerin fiyatlandırılmasında kullanılır. Ekonomi alanında ve ekonomik sistemlerin alt yapılarında iktisat teorilerinde bu denklem kullanımı mevcuttur."

KAYNAK: http://www.businessinsider.com/the-17-equations-that-changed-the-world-2012-7?op=1 orjinal dilde yazılı metinden çeviri için yararlanılan site: http://www.evrimagaci.org/makale/18 

Ian Stewart, Dünya'yı Değiştiren 17 Denklem

Matematikçi Ian Stewart "Bilinmeyenin İzinde: Dünya'yı Değiştiren 17 Denklem" başlıklı kitabını yayımladı ve insanlığın tarihinde keşfedilen 17 matematiksel denklemi, bilimsel yoğunluğundan kurtararak, herkes tarafından anlaşılabilir bir hale soktu. Prof. Dr. Ian Stewart'a bu kitabını neden yazmaya karar verdiği sorulduğunda şöyle yanıt veriyor:
"Denklemler kesinlikle sıkıcı olabilir ve çok karmaşık görünebilirler. Ancak bunun sebebi genellikle sıkıcı ve karmaşık bir şekilde sunulmalarındandır. Benim okullarımızdaki matematik öğretmenlerine göre bir avantajım var: Size toplamayı kendi başınıza nasıl yapacağınızı göstermeye çalışmıyorum. Denklemlerin nasıl çözüleceğini bilmeden de onların güzelliğini ve önemini takdir edebilirsiniz. Benim niyetim onları kültürel ve insani bir hale sokmak ve onları tarihimizdeki maskelerinden arındırmaktır. Denklemler, kültürümüzün önemli bir parçasıdır. Bu denklemlerin arkasındaki hikayeler, onları keşfedenler, onların yaşadıkları dönemler ve benzerleri oldukça etkileyicidir."

Paperback: 360 pages Publisher: Basic Books; First Trade Paper Edition edition (October 8, 2013) Language: English 
 
Kitap içersinden ayrıntılı olarak derlenmiş parçalara göz atmak isterseniz, blogumuzda yer alan (Bkz. Dünyayı Değiştiren 17-denklem) yazımızı okuyunuz.

| | Devamı... 2 yorum

Bir Soru ve Güzel Çözümler

Bakış açınıza göre değişen çözümleri sunan bir çarpanlara ayırma ve denklem çözümü sorusu. Her hangi bir matematik sorusunu çözmek istediğinizde farklı bakış açıları yakalamanız, çok farklı çözümleri elde etmenize imkan sağlayacaktır. Matematikten korkmadan biraz merak ve çaba ile matematiğin güzel dünyasına sizlerde girebilirsiniz.
Çözümler için Yılmaz Dağ, Mesut Aksoy, Barış Altay'a teşekkürler..

Cosx=a ve Tanx=a Denklemleri ve Çözüm kümesi

Trigonometrik denklemlerin çözüm kümesi yapılırken, birim çember üzerinden fonksiyonların aynı noktadaki açıların her ikisi birlikte alınır. Bölgelere göre değişen açılar aynı noktadaki değere eşit olduğundan genel çözüm kümesi istendiğinde, bütün bu açıları ifade edecek şekilde çözüm kümesi yazılır.
 

Sinx=a Denklemi ve Çözüm Kümesi

Trigonometrik denklemlerin çözüm kümesi yapılırken, birim çember üzerindeki açıların trigonometrik fonksiyonlara göre aldığı değerler dikkate alınarak genel çözüm yapılır.Aşağıda verilen sinx denklemi için, sin fonksiyonu aynı değer için birinci ve ikinci bölgede iki farklı açıya sahiptir.Bu nedenle genel çözüm işleminde bu dikkate alınır.


Sinx=a tipindeki ve sinx=cosy tipindeki denklem çözümlerine bir örnek verebiliriz. Sin ve Cos denklemlerinde iki fonksiyon kendi aralarında dönüştürülerek yukarıda belirtildiği şekilde denklemin genel çözümü yapılır.

Ayrıca Bakınız:

Harezmi ve ikinci Derece Denklemler

Doğum ve ölüm tarihleri kesin olmamakla birlikte El Harezmi (Ebu Abdullah Muhammed bin Musa) Hazar denizinin doğusundaki Harizm'de (Özbekistan) genel görüşe göre 783 yılında dünyaya geldiği kabul edilmektedir. Meşhur bilim tarihçisi George Alfred Leon Sarton (1884 -1956) "Introduction to the History of Science" ve "E.T. Bell "The Development of Mathematics" eserlerinde, Harizmî'nin 850'de vefat ettiğini kaydetmiştir. Tüm dünyaya ismini, (El Harezmi) – isminin Latince telaffuzu ile - “algoritma” olarak zikrettiren bu Müslüman Türk alimi, cebir ilminin kurucusu olarak kabul edilir. Zaten cebir kelimesi de Harezmi’nin (El Kitab’ül Muhtasar Fi Hisab’il Cebri ve’l Mukabele ) “Cebir ve denklem hesabı üzerine özet kitap” adlı eserinden gelir.
Harezmi, cebir denklemlerinin çözümünde kare ve diktörgen şekillerden yararlanır. Denklem çözümlerinde bu geometrik şekilleri kullandığından, denklemlerde hep artı işaretli terimler göz önünde tutulur. Kare bilinmeyeni, dikdörtgen ise bilinmeyenin sabit bir katını temsil eder. Denklem çözümleri daima pozitif değerler içindir. El-Harezmi, ikinci dereceden denklemlerin çözülmesi için geometrik modellerden de yararlanmıştır.  
El Harezmi, ikinci derece denklemlerin çözümünü çok sade, anlaşılır ve sistematik biçimde yazmıştır. Çözümleri adım adım sistemli bir sıra ile vermiş olması, ‘algoritma’ yöntemlerinin ortaya çıkmasını sağlamıştır. Günümüz dünyasının vazgeçilmez parçası olan algoritma ve bilgisayarların programlama dilleri, Harezmi’nin algoritmik yöntemleri esas alınarak oluşturulmuştur.
Günümüzde kullanılan ikinci derece denklemlerin kök bulma formülü de Harezmi'nin dikdörtgensel çözüm metodundan türemiştir. Diskriminant değerine ilk işaretler de Harezm'in denklem çözümlerinde görülmüştür.

El-Harezmi en genel hali ile ax^2+bx+c=0 şeklinde verilen bir ikinci dereceden denklemin köklerinin çözümünü bulmuştur. Uzun uğraşlar sonrasında, denklemi geometrik bir modelleme ile oluşturup çözüm kümesini bulmayı sağlamıştır. Tabi bu geometrik modellemede çözüm kümesi bulunurken negatif sayılar ihmal edilmiştir. Harezmi denklem çözümünde şu adımları izlemiştir.
Denklem, en genel halinde a, b ve c katsayıları ve x bilinmeyeni içeren ax^2+bx+c=0 şeklinde cebirsel bir ifade olarak yazılabilir. Denklemdeki x^2'li terimi, bir kenarı x’e eşit olan bir kare olarak modellemiştir. Bilinmeyen karesi yani x^2 geometrik olarak kare ile temsil edilebilir. El-Harezmi önce denklemin her iki tarafını denklemin başkatsayısı olan "a" ile bölerek ilk terimin bir kenarı x olan kare haline dönüşmesini sağlamıştır. Bu şekilde kare ve dikdörtgenlerden yararlanarak 2.derece bir denklemin köklerini bulmuştur.
 
Kaynakça: 
Prof. Dr. Şen, Z. 2006. Batmayan Güneşlerimiz. Sayfa 26. 
Göker, Lütfi 1997. Matematik tarihi ve Türk-İslam matematikçilerinin yeri. Düşünce Eserleri Dizisi. Milli Eğitim bakanlığı Yayınları, sayfa 476.

Matematik Denklem Düzenleyicisi

Daum Equation Editor ile matematiksel denklemleri düzenleyebilir ve düzenlediklerinizi, ister resim ister metin dosyası olarak kopyalayıp eklemek istediğiniz dokümana ekleme yapabilirsiniz.Her türlü matematiksel sembolü yazıp kullanabileceğiniz buradan da istediğiniz belgelere kopyalayıp yapıştırabileceğiniz güzel bir uygulamadır. Matematik denklemleri düzenlenebilir. Hem görsel olarak hem de kod sistemi ile çalışan uygulama klavyeden istediğiniz kadar girişi destekliyor.


Matematik denklemlerini düzenlemek için hazırlanan programı Google-Chrome web mağazasından indirip kullanabilirsiniz. Ancak bu programı kullanabilmeniz için Google Chrome kullanmanız gerekir. (Firefox, İnternet explorer gibi bir web tarayıcısı kullananlarda farklı eklentiler kullanılabilir.)
 
Eğer Google-Chrome kullanıyorsanız >>"Daum Equation Editor"<< tıklayarak "denklem düzenleyicisi" eklentisini indirip kullanmaya başlayabilirsiniz.
| | | Devamı... 1 yorum

Trigonometri Hesabı (Cos36)

Cos36 değerini tablo kullanmadan sadece geometrik veriler yardımıyla göstermeye çalışalım. Bulduğumuz değer trigonometrik değerler tablosundan da görüleceği üzere yaklaşık olarak aynı değerde olacaktır.


Bu hesaplama yapılırken bir ikizkenar üçgenden yararlanarak üçgenin taban açılarını 72 derece seçtiğimiz zaman yukarıdaki bir şekil ortaya çıkar. Taban açılarının birinden karşı kenara bir açıortay çizersek ikinci bir ikizkenar üçgen elde etmiş oluruz. Daha sonra bu iki ikizkenar üçgenin benzerliğinden elde ettiğimiz ikinci dereceden denklemin çözüm kümesini kök bulma formülü ile bulduğumuz zaman cos 36 değerini yaklaşık değerini hesaplamış oluruz. cos36=0,8090 bu değer trgionometrik tabloda da aynı şekilde görülmektedir. Bunu diğer açılara da aynı şekilde uygulama şansımız vardır. Böylece trigonometrik değerler tablosundaki sayıların nasıl ortaya çıktığı konusunda bir bilgi elde etmiş oluruz.
Yukarıda anlatılan özelliği kullanarak ikinci derece denklemler ünitesi ile ilgili bir örnek soru çözümü paylaşalım. Tirgonometri bilgisine gerek kalmadan üçgenlerin benzerliğini kullanarak soru çözümünün nasıl yapıldığını görmeye çalışalım.

Pierre de Fermat ve Denklemi

Fermat, 1601’de Fransa’nın Lomagne kentinde doğdu. İlk öğrenimini doğduğu şehirde yapmıştır. Yargıç olmak için çalışmalarına Toulouse’de devam etmiştir...Fermat, memurluğunun yoğun işlerinden geriye kalan zamanlarında matematikle uğraşmıştır.
Arşimet’in eğildiği diferansiyel hesaba geometrik görünümle yaklaşmıştır. Bu problem şimdi lise öğrencilerine bile kolaylıkla öğretilebilir. Fakat, bu problemin açtığı çığır önemlidir. Fiziğe uygulamaları da ilginçtir. Eğrilerin çiziminde maksimum ve minimum noktaların önemi bilinmektedir. İşte bu kavramları koyan yine Fermat’tır. Oldukça kolay gibi görülen bu problemin matematik ve fizikte çok geniş ve ileri uygulamaları vardır. Ayrıca, bu kavramları ışık bilmine uygulamasını çok iyi beceren yine odur. Buna bağlı olarak, yansıma, kırılma, geliş ve yansıma açıları üzerine yaptığı bağlılıklar önemini bugün bile korumaktadır. Fermat, analitik geometriyi üç boyutlu uzaya aktarmıştır. Amatör bir matematikçi ve düzenli bir evrak memuru olan Fermat’ın en önemli matematik çalışması sayılar kuramı üzerinedir. Asal sayılar üzerinde de çok durmuştur. Onun bu konuda çeşitli teoremleri vardır. örneğin, (4n + 1) şeklinde yazılan bir asal sayı, yalnızca bir tek şekilde iki karenin toplamı olarak yazılabilir. Bu teoremi daha sonra Euler kanıtlamıştır. "Fermat Teoremi" olarak tanınan meşhur teoremi ise, "p asal bir sayı ve a ile p aralarında asal olduğu zaman, (ap-1-1)  sayısı p sayısına bölünebilir" biçiminde ifade edilebilir. Bu teoremi Leibniz ve Euler ispatlamışlardır.  
 
Fermat’nın asıl önemli teoremi ise, xn + yn =zn (burada n x,y,z sayılarının kuvvetidir) denklemi x, y, z ve n’nin pozitif değerleri için n>2 ise imkansızdır" biçimindedir.  Fermat, bütün teoremlerinin ispatlarını vermemiştir. 1879 yılına kadar onun kullanmış olduğu ispat yöntemleri tamamıyla kayıptır; bu tarihte Leiden Kütüphanesi’nde Huygens’in yazmaları arasında bulunan bir belge, Fermat’nın indüktif metodu kullandığını gösterdi. Fermat, bu metodun, özellikle belirli bağıntıların imkansızlığının ispatına uygun olduğunu söylemiştir.

Aşağıdaki Yazılar İlginizi Çekebilir!!!

Matematik Konularından Seçmeler