Net Fikir » konikler
Elipsin Analitik incelenmesi
Düzlemde sabit iki farklı noktaya uzaklıkları toplamı sabit olan noktaların geometrik yerine elips denir. Sabit olan bu noktalara elipsin odakları denir. Herhangi bir noktanın, elipsin odaklarına uzaklıkları toplamı, elipsin asal eksen uzunluğu olarak tanımlanır. Elipsin odakları x ekseni üzerinde ise bu elips yatay elips olarak isimlendirilir. Eğer Elipsin odakları y ekseni üzerinde ise bu elips; düşey elips olarak isimlendirilir.
Gündelik Hayatta Hiperbol Biçimleri
Sabit iki noktaya olan uzaklıkları farkı sabit olan noktaların geometrik yerine hiperbol adı verilir. Bu sabit noktalara da hiperbolün odak noktaları denir. Hiperbol eğrileri gündelik hayatta özellikle tasarım ve mimaride sıklıkla karşımıza çıkan matematik kavramlarından biridir. Hiperbolik eğriler son zamanlarda yenilenmiş tasarımlarda ve mimari çizgilerde sıklıkla karşımıza çıkmaktadır.
Hiperbolün Analitik İncelenmesi
Sabit iki noktaya olan uzaklıkları farkı sabit olan noktaların geometrik yerine hiperbol adı verilir. Bu sabit noktalara da hiperbolün odak noktaları denir. Odakları birleştiren doğru parçasının tam orta noktasına hiperbolün merkezi denir. Hiperbolün odakları analitik düzlemde x ya da y ekseni üzerinde olabilir. Merkezi orijin olup odakları x ya da y ekseni üzerinde bulunan hiperbole merkezil hiperbol veya standart hiperbol adı verilir.
Elipsin alanı ve ispatı
Eksen uzunlukları asal eksen 2a ve yedek eksen 2b olan elipsin Alanı (elips) = π.a.b olduğunu elips denkleminden yola çıkarak ispatlayalım.
Elipsin çevresi ve ispatı
Bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.Elips, bir düzlemde verilen iki noktaya odak noktası (F1, F2) uzaklıkları toplamı sâbit olan noktaların geometrik yeridir; verilen bu iki noktaya F1 ve F2 noktaları elipsin odakları denir. Odaklarının arasındaki uzunluğa 2c dersek ortadaki nokta elipsin merkez noktasıdır.
Elipsin x ekseni üzerinde kalan F1 ve F2 noktaları arasındaki uzaklığa orijine eşit olacak biçimde a+a=2a asal eksen, y ekseni üzerinde kalan aynı şekildeki b+b=2b uzunluğuna ise yedek ekseni denir. Aynı zamanda pisagor teoremi gereği burada oluşan dik üçgenden b² + c² = a² bağıntısı bulunur. b ve F1 ile merkez arasındaki doğru parçası, yani c dik kenarlar, a ise hipotenüs´dür.Elipsin 2a büyüklüğünde büyük (büyük ekseni) ve 2b büyüklüğünde küçük ekseni mevcuttur. Elips bunları çap kabul eden küçük ve büyük çemberleri arasında kalır.
Aşağıdaki Yazılar İlginizi Çekebilir!!!
Matematik Konularından Seçmeler
matematik
(301)
geometri
(133)
ÖSYM Sınavları
(61)
trigonometri
(56)
üçgen
(49)
çember
(36)
sayılar
(32)
fonksiyon
(30)
türev
(26)
alan formülleri
(25)
analitik geometri
(23)
dörtgenler
(19)
denklem
(18)
limit
(18)
belirli integral
(14)
katı cisimler
(12)
istatistik
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(6)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)







