Net Fikir » modelleme
Şapka Deseni (Einstein Aperiodic)
Doğada fraktal ve desen şeklinde, evlerimizde genellikle mutfak ve banyo duvarlarımızda, düzenli bir şekilde dizilmiş ve birbiri ardınca tekrarlanarak sıralanmış karo/fayans desenlerini görüyoruz. Acaba tekrarsız biçimde hiç boşluk kalmayacak şekilde bir düzlemi tamamen döşemek mümkün mü? İşte bu soru yıllarca matematikçileri meşgul etti. Böyle bir şekil, matematikte aperiodik bir monotil veya "einstein" şekli olarak bilinir. Bu isim, tek parça anlamında kullanılacak şekilde Alman matematikçi Ludwig Danzer tarafından verilmiştir.
Aperiodik şekil setinin ilk örneğinde çok fazla şekil vardı. Matematikçiler bu sayıyı zaman içinde düşürmek için çalıştılar. Aperiodik şekiller olarak adlandırılan bu özel durumlarda, düzlemdeki döşemeyi devam ettirmek için kopyalayıp yapıştırabileceğiniz tekrarlı bir desen yoktur. Mozaiği nasıl parçalarsak parçalayalım ortaya çıkan her bölüm birbirinden bağımsız ve benzersiz olacaktır. Bu aperiodik modeller, matematikçilerin bu yöndeki çalışmalarda ilerlemesiyle bugüne kadar, birbirinden farklı şekillerde en az iki fayanstan oluşacak şekilde bir seviyeye kadar gelebilmişti. Acaba bu aperiodik modelleri, sadece tek bir şekle düşürebilmek mümkün müydü?
Matematikçiler, işte bu sorunun cevabı için 1960'lardan beri bir düzlemi boşluksuz döşeyebilecekleri bir karo modeli arıyorlar. Matematikçiler, aperiodik şekil setinin ilk örneğinde 20.000'den fazla şekil olabileceğini tespit ettiler. Elbette bu sayı bir,zemin döşemesiiçin oldukça fazlaydı bu nedenle matematikçiler, bu farklı model sayısını zaman içinde düşürmek için çok çalıştılar. İlk olarak yakın zamanda Berger’in çalışmaları, düzlemi aperiodik olarak döşeyen 20.426 modelin olduğunu gösterir. Takip eden yıllarda, matematikçiler aperiodik mozaikler oluşturabilecek daha küçük fayans setleri buldular. İlk olarak Berger çalışmasını ilerleterek, 104 farklı fayanslı başka bir model buldu. Daha sonra, 1968'de bilgisayar bilimcisi Donald Knuth, 92 benzersiz örnek ile bir tane daha buldu. 1969'da matematikçi Rafael Robinson, sadece altı karo tipi olan yeni bir model buldu ve son olarak 1974'te fizikçi Roger Penrose sadece iki karo ile bir bu döşeme fikri için çözüm sundu. Roger Penrose’un 1970'lerde sadece iki aperiodik fayans içeren setlerdeki keşfiyle sonuçlanan bu eğlenceli çalışma, matematikçiler arasında daha küçük aperiodik fayans setleri inşa etmek için bir yarış başlattı. 1982'de, 2011 Nobel kimya ödülünü kazandıran çalışmaları ile tanınan Dan Shechtman, Penrose şekillerinin benzer simetrilerinin doğada kuaskristal denilen yapılar şeklinde bulunduğunu keşfetti. O zamandan beri, matematikçiler iki boyutlu düzlemi boşluklar veya çakışmalar olmadan aperiodik olarak dolduran sadece tek bir karo bulmaya çalışıyorlar.
1990'larda, Petra Gummelt (1996) ve Hyeong-Chai Jeong and Paul J. Steinhardt (1997) iki farklı çalışma ile düzlemi, aperiodik olarak döşemek için tek bir 10 taraflı döşemenin bitişik kopyalarının bir düzlemi boşluksuz örtebileceğini gösterdi. Yaklaşık on yıl sonra 2000'li yıllarda,Tazmanya'da amatör bir matematikçi olan Joan Taylor, benzer bir şekil keşfetti. 2010 yılında Joshua Socolar yine benzer bir çalışma sundu. 2022 yılında, Los Angeles, California Üniversitesi'nden matematikçiler Rachel Greenfeld ve Terence Tao, benzer çalışmalar ile yüksek boyutlu bir şekil/desenin döndürülmesine veya yansıtılmasına gerek kalmadan bir düzlemi aperiodik olarak döşeyebileceğini duyurdu. Ancak hiç kimse bir düzlemi aperiodik olarak döşeyen basit iki boyutlu tek bir şekil bulamadı. Sonunda, matematikçiler böyle bir karonun var olup olmadığını merak etmeye başladılar. Birçok matematikçi o zamandan beri tek karo çözüm olan einstein'i aradı, ama hiçbiri maalesef başaramadı.Sonunda bu yönde çalışmalar durdu.
Yapboz, bulmaca ve fraktal meraklısı emekli teknisyen 64 yaşındaki David Smith, 2022 Kasım ayı ortalarında en sevdiği şeylerden birini yaparken ilginç bir şey keşfetti. Şapka şeklinde bir karo ile bir düzlemi boşluk olmadan o karonun kopyalarıyla tamamen doldurabilmenin mümkün olabileceğini gördü. Genellikle fayans döşemesi oluşturduğunda, ya tekrar eden bir desene yerleşirler ya da ekranın çoğu yeri tam olarak boşluksuz döşenemez. Ama bu şapka döşemesi öyle görünmüyordu. David Smith, bu oyun deneyinde, kart stoğundaki şapkanın 30 kopyasını kesti ve bir masaya monte etti. Sonra 30 tane daha kesti ve bu şekilde devam ederek daha önce görülmemiş zor ve küçük bir mozaik karo modeli ürettiğini fark etti. Smith, çalışmasının bir sonucunu görmek amacıyla, Kanada Waterloo Üniversitesi'ndeki bilgisayar bilimcisi Craig Kaplan'a şekli incelemesi için karolarının bir tanımını gönderdi.
Craig Kaplan, hemen şeklin özelliklerini araştırmaya başladı. David Smith ve Craig Kaplan bu çalışmayı araştırmacılar, Chaim Goodman-Strauss ve Joseph Myers yardımlarıyla birlikte ilerlettiler, sonunda bu şapka modeli döşemesinin matematikçilerin beş yıldan fazla bir süredir aradığı bir şey olduğunu: tekrarlanan bir fayans bloğundan oluşmayan desenlerden oluşan kopyalar ile tüm bir düzlemi tamamen doldurabilen tek bir karo olduğunu keşfettiler. Araştırmacılar, birlikte bu modelin gerçekten bir einstein şekli olabileceğini doğruladılar. Her ne kadar şapka şekline benzemese de bu modele şapka ismini vererek deseni kamuoyu ile paylaştılar.
Matematikçiler, düzlemi tekrarlayan “ veya tam terim olarak periyodik ” biçimde kaplayabilen kareler veya altıgenler gibi şekillerin aksine böyle bir karo veya karo setini (aperiodik) olarak adlandırırlar. Şapka döşemesi, tüm ölçeklerde periyodik düzeni zorla bozacak kadar karmaşık olmasına rağmen oldukça basit formda iki boyutlu bir desen olması açısından, bu türden sonsuz farklı fayanslardan farklıdır. Yeni keşfedilen şapka döşemesi, bu açıdan bakıldığında aperiodik fayansların sürekliliğinden sadece biri denilebilir. Şapka deseni, bir simetriye sahip değildir ve basitliğinde neredeyse sıradandır.
Şapka döşemesi esasında, matematiksel açıdan bakıldığında periyodik ve aperiodik döşemelerin birbiriyle daha yakından bağlantılı olduğunu gösteriyor. Her şapka deseninin 13 tarafı vardır: Bu kenar/taraflar altı uzun ve altı kısa uçurtma kenarına karşılık gelen ve iki kısa uçurtma kenarından yapılmış farklı bir tane daha kenar bulundurur. Bu tarafların uzunluklarını kendi aralarında değiştirerek, yeni şekillerin bir sonsuzluğu oluşturulur. Bir kaydırıcı çubuk yardımıyla bu kenarlar üzerinde: Çubuk sola doğru hareket ettirildiğinde, kısa taraflar (gibi yalnız çift kısa taraf) kısalır; sağa doğru hareket ettirildiğinde uzun taraflar kısalır. Bu şekilde kaydırma çubuğu çeşitli uzunluklarda hareket ettirildiğinde sonradan kaplumbağa adı verilen tıpkı şapka deseni gibi yeni bir desen daha bulunabilir. Sonunda bulunan periyodik olmayan tek parça ile aynı özelliklere sahip şapkanın değiştirilmiş bir versiyonu, kaplumbağa deseni olur.
Arkansas Üniversitesi'nde matematikçi ve İngiltere'nin Cambridge kentinde kombinatorik doktorası olan bir yazılım mühendisi Joseph Samuel Myers, bu yöntem sayesinde kaplumbağa modeli gibi şapka deseninin sağında veya solunda bir yerlerde, sonsuz sayıda buna benzer başka şekil ve desenler bulunabileceğini gördü. Kaydırıcıyı sola doğru iterseniz, şapkanın kısa kenarları kaybolur ve altı taraflı bir şekil (chevron) kalır; sağa doğru iterseniz, uzun taraflar kaybolur yedi taraflı (kuyruklu yıldız) olarak adlandırılan bir şekil bırakır. Uzun ve kısa kenarların eşit olduğu kaydırıcı çubuğunun ortasında da yeni bir şekil de olabilir.
Chevron ve kuyruklu yıldız desenleri de bir düzlemi/bir uçağı kaplamayı periyodik olarak tam bir şekilde döşeyebilir. Bu yöntem, artık daha büyük şapka döşemeleri yapmanın bir yolunu sağlamıştır. Buna göre yukarıdaki şekilde bir H ile başlayabilir, boyutunu büyütebilir, ardından yukarıdaki dört şeklin kombinasyonuyla bu kaplamayı doldurabilirsiniz. Ardından, tüm bu montajı şişirebilir ve (artık çok büyük olan) H içindeki tüm şekilleri H, T, P ve F şekil çeşitleriyle doldurabilirsiniz. Şekiller içinde giderek daha büyük bir şekil hiyerarşisi oluşturarak bu adımları süresiz olarak tekrarlayabilirsiniz. Hiyerarşinin en alt basamağında ise daima şapka deseni yer alır.
Joseph Samuel Myers, kaydırıcıdaki tüm şekillerin iki uç ve orta nokta hariç, aperiodik bir şekil olduğunu kanıtlamak için chevron ve kuyruklu yıldızın geometrisini kullanılabileceğini fark etti.
Bu yöndeki çalışmalar, bilişim dünyasının yardımıyla halen bilişim dünyasının desteği ile devam ediyor. Bundan sonraki çalışmalarda matematikçiler, yeni desenler için bu şekilde bir tür kaynak belirleyebilecek mi? İşte merak edilen genel soru bu.
Stanford Üniversitesinden matematikçi Rafe Mazzeo, buluşun bilimsel değerlendirme süreci tamamlanarak kesinleşmesi durumunda, araştırma alanında büyük bir çığır açacağını söyleyerek "Döşemelerin fizik, kimya ve daha birçok alanda, örneğin kristallerin incelenmesinde birçok işe yarayacağını söyledi. Bu yeni keşif, çarpıcı derecede basit bir örnek olması açıdından önemli. Yeni periyodik olmayan döşemeler bulmak için bilinen standart bir teknik yoktu. Bu yüzden bu yöntem, gerçekten yeni bir fikir içeriyor ve heyecan verici." ifadelerini kullandı.(AA Haber Metni)
Einstein Aperiodic Monotile Lego (Youtube)
Kaynak:
https://www.scientificamerican.com/article/newfound-mathematical-einstein-shape-creates-a-never-repeating-pattern/
https://www.quantamagazine.org/hobbyist-finds-maths-elusive-einstein-tile-20230404/
https://www.thetimes.co.uk/article/retired-yorkshireman-solves-elusive-einstein-tile-maths-problem-vqw7xgt3p
https://www.theguardian.com/science/2023/apr/03/new-einstein-shape-aperiodic-monotile
Matematiksel Modelleme ve Problem Çözme
Modelleme ile ilgili önemli sorulardan birisi, modelleme ile problem çözme arasında bir fark olup
olmadığı; eğer varsa bu farkın ne olduğudur. Matematiksel modelleme en çok geleneksel sözel problemlerle karıştırılabilmektedir.
Reusser ve Stebler’e (1997) göre geleneksel sözel
problemler, öğrencilerde kitapta olan veya öğretmen tarafından sorulan her problemin çözülebilir
ve çözülmesi gereken bir problem olarak düşünme; problem anlaşılmadı ise doğru matematiksel
işlemleri seçmek için anahtar kelimelere veya daha
önce çözülen benzer problemlere bakma gibi bazı
didaktik kabullerin gelişmesine sebep olmaktadır.
Ayrıca, sözel problemlerde gerçek hayat durumu
gibi yansıtılan durumlar genellikle bir gerçek hayat
durumu da değildir (Niss ve ark., 2007). Bu problemlerde bütün değişkenler belli, idealleştirilmiş ve
gerçeklikten uzak, yapay bir durum söz konusudur.Sözel problemleri çözerken öğrenciler sıklıkla gerçek hayat durumlarını ve deneyimlerini göz önünde bulundurmadan sadece işlemlere odaklanmaktadırlar (ör. Greer, 1997; Nunes, Schliemann ve Carraher, 1993). Sözel problemlerdeki gerçekçi durumu öğrencilerin nasıl algıladıklarını matematiksel modelleme bağlamında inceleyen birçok çalışma vardır (Greer 1997; Verschaffel ve De Cor - te, 1997; Verschaffel, De Corte ve Borghart, 1997; Verschaffel ve ark., 2002). Bu çalışmalarda öğrencilerin sözel problemleri çözerken gerçek hayat durumlarını da göz önünde bulundurma becerilerini geliştirmek hedeflenmiştir. Kullanılan soru türleri aşağıdaki örnekte de görüldüğü gibi geleneksel sözel problemlere çok benzemekle birlikte, göz önünde bulundurulması gereken bir gerçek hayat durumu söz konusudur.
“228 kişilik bir turist kafilesi yüksek bir binanın tepesinden şehri izlemek istemektedir. Binada kapasitesi 24 kişilik tek bir asansör bulunmaktadır. Asansör bütün kafileyi binanın tepesine çıkarabilmek için kaç sefer yapmalıdır?” (Vers - chaffel ve De Corte, 1997, s. 584)Bu problemde, geleneksel sözel problemlerden farklı olarak (ondalık) kesir olarak çıkan bir sonucun öğrenciler tarafından nasıl yorumlandığını sorgulamaktadır. Burada öğrencilerin sözel problemlere verdikleri cevapları gerçek hayat bağlamında da test etme becerilerini geliştirme amaçlanmıştır. Yani 228’in 24’e bölümü sonucu kalan 12 kişi için asansörün bir sefer daha yapması gerektiği fikri öğ - rencilere kazandırılmaya çalışılmaktadır. Böylece bu tür sözel problemler matematiksel modelleme için başlangıç uygulamaları olabilir (Verschaffel ve De Corte, 1997). Ancak yine de, bu tür problemlerde idealleştirilmiş bir gerçek hayat durumunun bütün bilinenleri, bilinmeyenleri ve sonucu bulmak için yapılacak işlemler anahtar kelimelerle sorunun içerisinde gizlenmiştir. Lingefjard (2002b), modelleme sürecinde öğrencilerin yaşadıkları birçok alt sürecin problem çözme olduğunu ve matematiksel modelleme ile problem çözme arasında bir karşılaştırma yapmanın çok anlamlı olmadığını ifade eder. Fakat yine de, matematiksel modelleme ve geleneksel problem çözme arasındaki farklar ve benzerlikler birçok araştırmacı tarafından incelenmiştir (ör. Lesh ve Doerr, 2003a; Lesh ve Zawojewski, 2007; Mousoulides, Sriraman ve Christou, 2007; Zawojewski ve Lesh, 2003). Bu çalışmalarda geleneksel problemlerle kıyaslandığında matematiksel modelleme problemlerinin daha açık uçlu, öğrencilere farklı düşünme fırsatları sunan, daha gerçekçi ve anlamlı öğrenmeyi destekleyen özelliklere sahip olduğu ifade edilmektedir.
Lesh ve Zawojewski (2007), Polya geleneğini devam ettiren problem çözme çalışmalarının betimsel düzeyde kalmakta olduğu ve öğrencilerin gerçek hayatta problem çözme becerilerini geliştirme sorununa bir çözüm sunmadığı için eleştirmektedir. Bu araştırmacılara göre problem çözme alan yazınında bahsedilen problemi anlama, bir strateji belirleme, uygulama ve test etme gibi aşamalar çalışmaların çoğunda ortaya çıkan ve farklı terimlerle adlandırılan sıralı yapıyı ifade etmektedir. Bununla birlikte, yine alan yazında belli başlı problem çözme stratejileri tanımlanmaktadır. Gerçek hayatta bireylerin ileriki yaşamlarında karşılaşabilecekleri problem durumları daha karmaşık olacaktır. Lesh ve Doerr (2003a) ve Lesh ve Zawojewski (2007) gibi araştırmacılar tarafından tartışılan fikirler doğrultusunda hazırlanan matematiksel modelleme ve problem çözmenin bir karşılaştırması aşağıda verilmiştir.
Matematiksel Modelleme Yaklaşımları
Matematik ile gerçek hayat arasında bağ kurmaya
çalışan her tür uygulama matematiksel modellemeyle ilişkilendirilebilir. Fakat farklı teorik altyapılar çerçevesinde matematik eğitiminde modelleme
kullanımına yönelik farklı yaklaşımlar söz konusu
olup uluslararası çalışmalarda da henüz ortak bir
anlayış oluşmamıştır (Kaiser, Blum, Borromeo Ferri ve Stillman, 2011; Kaiser ve Sriraman, 2006). Bazı
araştırmacılar modellemeyi matematik eğitiminde
yapılandırmacılığın da ötesinde bir paradigma,
eğitim ve öğretimi yorumlamada yeni bir yaklaşım
olarak benimserken (Lesh ve Doerr, 2003a, 2003b)
bir kısım araştırmacılar matematiksel modellemeyi
gerçek hayat durumlarının matematiksel dilde ifade edilmesi, hazır verilen matematiksel yapıların,
modellerin ve formüllerin gerçek hayatta uygulamaları olarak görmektedir (Haines ve Crouch,
2007).
Matematiksel modelleme alanında yapılan
çalışmalarda tartışılan konuların anlaşılması için
bu farklı yaklaşımların benzer ve farklı yönleri irdelenmelidir. Ancak ne yazık ki, birçok araştırmacı
tarafından dile getirilmekle birlikte henüz matematiksel modellemenin anlaşılmasındaki farklılıklara
yönelik ayrıntılı ve sistematik bir şekilde analiz
eden bilimsel çalışmalar yeterli düzeyde değildir
(Kaiser, 2006; Kaiser ve Sriraman, 2006; Sriraman,
Kaiser ve Blomhoj, 2006). Bu nedenle, matematiksel modellemenin öğrenimi ve öğretimi ile ilgili
tüm dünyada kabul gören bir teoriden bahsetmek
de henüz mümkün değildir (Kaiser ve ark., 2006).
International Commission on Mathematical Instruction (ICMI) ve the International Community of Teachers of Mathematical Modelling and Applications (ICTMA) tarafından düzenlenen kongrelerde modellemeyle ilgili sunulan çalışmaların genel hedefleri ve teorik çerçeveleri göz önünde bulundurularak Kaiser (2006) ile Kaiser ve Sriraman (2006) tarafından yapılan sınıflandırma bu konuda faydalı bir bakış açısı sağlamaktadır. Araştırmacılar sınırlı sayıdaki çalışmaları inceleyerek bunlara yön veren Matematiksel Modelleme yaklaşımlarını 6 başlık altında sınıflandırmaktadırlar: ( i) gerçekçi veya uygulamalı modelleme, ( ii ) bağlamsal modelleme, ( iii ) eğitimsel modelleme, ( iv ) sosyokritik modelleme, ( v ) epistemolojik veya teorik modelleme ve ( vi ) bilişsel modelleme. Bu sınıflandırmada her bir yaklaşım matematiksel modellemenin farklı bir yönünü ön plana çıkarmaktadır.
Gerçekçi veya uygulamalı modelleme yaklaşımı, öğrencilerde problem çözme ve modelleme becerilerini geliştirmeyi hedeflemektedir. Bu yaklaşımda öğrencilere mühendislik ve diğer bilim dallarından problem durumları verilerek öğrendikleri matematiksel bilgileri farklı bağlamlarda uygulamaları önemsenmektedir. Bağlamsal modelleme yaklaşımında öğrencilere yapaylıktan uzak anlamlı gerçek hayat durumları verilmektedir. Böylece öğrencilerin matematiksel kavramları uygun bağlamlar içerisinde tecrübe ederek daha anlamlı öğrenebilecekleri varsayılır.
Eğitimsel modelleme ise gerçekçi modelleme yaklaşımı ile bağlamsal modelleme yaklaşımının bir çeşit karması olarak düşünülebilir. Bu yaklaşımda matematiksel modelleme ile uygun öğrenme ortamlarının ve süreçlerinin oluşturularak öğrencilere kavramların öğretilmesini amaçlamaktadır.
Sosyokritik modelleme yaklaşımı ise matematiğin sosyokültürel ve etnomatematik boyutlarına odaklanmaktadır. Bu yaklaşıma göre matematik öğretimi ile öğrencilere kendi yaşadığı topluma ve kültürel yapıya özgü kullanabileceği eleştirel düşünme becerileri kazandırılmalıdır. Bunu gerçekleştirmede matematiksel modelleme etkinliklerinin önemli olduğu düşünülmektedir. Bu çerçevede modelleme sürecinde öğrencilerin basitten karmaşığa doğru matematiği kullanarak tartışmaları onların eleştirel düşünme becerilerinin gelişmesine katkı sunacağı varsayılır.
Epistemolojik veya teorik modelleme yaklaşımı ise matematiksel modellemede, matematiksel kavramlar arasındaki ilişkileri ve öğrencilerin bunlar üzerinde konuşmalarını ön planda tutmaktadır. Bu yaklaşıma göre modelleme etkinliklerindeki gerçekçi bağlam ikinci planda olup, içerisinde matematik olan her uğraş bir modelleme etkinliği olarak kabul edilir. Son olarak, bilişsel modelleme yaklaşımı ise modelleme sürecinde öğrencilerin yaşadıkları bilişsel ve üst bilişsel düşünme süreçlerinin analiz edilmesine odaklanmaktadır. Bu yaklaşıma göre modelleme etkinlikleri öğrencilerin düşünme süreçlerini anlama ve destekleme amacıyla öğretmenlere yol gösterici bir ortam sunmaktadır. Kaiser (2006) ile Kaiser ve Sriraman (2006) tarafından öne sürülen sınıflandırma, sistematik bilimsel bir analizden ziyade araştırmacıların öznel yorumlarını içermektedir. Bu sınıflandırmadaki modelleme yaklaşımlarını birbirinden kesin sınırlarla ayırmak pek de mümkün değildir. Nitekim bunun yüzeysel bir sınıflandırma olduğunu bu araştırmacıların kendileri de belirterek matematiksel modelleme ve ilgili kavramları üzerine ortak anlayışı artırmak ve derinleştirmek için bu konuda daha ayrıntılı çalışmaların yapılması gerektiğini önermektedirler. Kaiser ve Sriraman (2006) tarafından yapılan sınıflandırma farklı matematiksel modelleme yaklaşımlarını ve anlayışlarını ifade etmekle birlikte aralarındaki farkı net bir şekilde ortaya koymamaktadır.
Matematiksel modellemenin matematik öğretiminde kullanım amacı bakımından daha basit bir sınıflandırma yapmak mümkündür. Genel olarak bakıldığında matematiksel modellemenin matematik eğitiminde kullanım amacına yönelik iki farklı yaklaşımdan söz etmek mümkündür: ( i ) matematik öğretiminin amacı, ( ii ) matematiği öğretmek için kullanılan bir yöntem (araç) (Galbraith, 2012; Gra vemeijer, 2002; Julie ve Mudaly, 2007; Niss ve ark., 2007).
International Commission on Mathematical Instruction (ICMI) ve the International Community of Teachers of Mathematical Modelling and Applications (ICTMA) tarafından düzenlenen kongrelerde modellemeyle ilgili sunulan çalışmaların genel hedefleri ve teorik çerçeveleri göz önünde bulundurularak Kaiser (2006) ile Kaiser ve Sriraman (2006) tarafından yapılan sınıflandırma bu konuda faydalı bir bakış açısı sağlamaktadır. Araştırmacılar sınırlı sayıdaki çalışmaları inceleyerek bunlara yön veren Matematiksel Modelleme yaklaşımlarını 6 başlık altında sınıflandırmaktadırlar: ( i) gerçekçi veya uygulamalı modelleme, ( ii ) bağlamsal modelleme, ( iii ) eğitimsel modelleme, ( iv ) sosyokritik modelleme, ( v ) epistemolojik veya teorik modelleme ve ( vi ) bilişsel modelleme. Bu sınıflandırmada her bir yaklaşım matematiksel modellemenin farklı bir yönünü ön plana çıkarmaktadır.
Gerçekçi veya uygulamalı modelleme yaklaşımı, öğrencilerde problem çözme ve modelleme becerilerini geliştirmeyi hedeflemektedir. Bu yaklaşımda öğrencilere mühendislik ve diğer bilim dallarından problem durumları verilerek öğrendikleri matematiksel bilgileri farklı bağlamlarda uygulamaları önemsenmektedir. Bağlamsal modelleme yaklaşımında öğrencilere yapaylıktan uzak anlamlı gerçek hayat durumları verilmektedir. Böylece öğrencilerin matematiksel kavramları uygun bağlamlar içerisinde tecrübe ederek daha anlamlı öğrenebilecekleri varsayılır.
Eğitimsel modelleme ise gerçekçi modelleme yaklaşımı ile bağlamsal modelleme yaklaşımının bir çeşit karması olarak düşünülebilir. Bu yaklaşımda matematiksel modelleme ile uygun öğrenme ortamlarının ve süreçlerinin oluşturularak öğrencilere kavramların öğretilmesini amaçlamaktadır.
Sosyokritik modelleme yaklaşımı ise matematiğin sosyokültürel ve etnomatematik boyutlarına odaklanmaktadır. Bu yaklaşıma göre matematik öğretimi ile öğrencilere kendi yaşadığı topluma ve kültürel yapıya özgü kullanabileceği eleştirel düşünme becerileri kazandırılmalıdır. Bunu gerçekleştirmede matematiksel modelleme etkinliklerinin önemli olduğu düşünülmektedir. Bu çerçevede modelleme sürecinde öğrencilerin basitten karmaşığa doğru matematiği kullanarak tartışmaları onların eleştirel düşünme becerilerinin gelişmesine katkı sunacağı varsayılır.
Epistemolojik veya teorik modelleme yaklaşımı ise matematiksel modellemede, matematiksel kavramlar arasındaki ilişkileri ve öğrencilerin bunlar üzerinde konuşmalarını ön planda tutmaktadır. Bu yaklaşıma göre modelleme etkinliklerindeki gerçekçi bağlam ikinci planda olup, içerisinde matematik olan her uğraş bir modelleme etkinliği olarak kabul edilir. Son olarak, bilişsel modelleme yaklaşımı ise modelleme sürecinde öğrencilerin yaşadıkları bilişsel ve üst bilişsel düşünme süreçlerinin analiz edilmesine odaklanmaktadır. Bu yaklaşıma göre modelleme etkinlikleri öğrencilerin düşünme süreçlerini anlama ve destekleme amacıyla öğretmenlere yol gösterici bir ortam sunmaktadır. Kaiser (2006) ile Kaiser ve Sriraman (2006) tarafından öne sürülen sınıflandırma, sistematik bilimsel bir analizden ziyade araştırmacıların öznel yorumlarını içermektedir. Bu sınıflandırmadaki modelleme yaklaşımlarını birbirinden kesin sınırlarla ayırmak pek de mümkün değildir. Nitekim bunun yüzeysel bir sınıflandırma olduğunu bu araştırmacıların kendileri de belirterek matematiksel modelleme ve ilgili kavramları üzerine ortak anlayışı artırmak ve derinleştirmek için bu konuda daha ayrıntılı çalışmaların yapılması gerektiğini önermektedirler. Kaiser ve Sriraman (2006) tarafından yapılan sınıflandırma farklı matematiksel modelleme yaklaşımlarını ve anlayışlarını ifade etmekle birlikte aralarındaki farkı net bir şekilde ortaya koymamaktadır.
Matematiksel modellemenin matematik öğretiminde kullanım amacı bakımından daha basit bir sınıflandırma yapmak mümkündür. Genel olarak bakıldığında matematiksel modellemenin matematik eğitiminde kullanım amacına yönelik iki farklı yaklaşımdan söz etmek mümkündür: ( i ) matematik öğretiminin amacı, ( ii ) matematiği öğretmek için kullanılan bir yöntem (araç) (Galbraith, 2012; Gra vemeijer, 2002; Julie ve Mudaly, 2007; Niss ve ark., 2007).
Birinci yaklaşımda matematik öğretimi ile
hedeflenen öğrencilerin modellerinin ve bu modelleri kullanarak matematiksel modelleme yapabilme
becerilerinin geliştirilmesi hedeflenir. Matematik
sel kavram ve modeller verildikten sonra gerçek
hayat uygulamaları ile desteklenir. Bu yaklaşımda
matematikten gerçek hayata (matematikten gerçek
hayata) doğru bir yönelim vardır.
İkinci yaklaşımda
ise matematiksel modelleme matematiksel kavram
ve modellerin öğretilmesinde bir yöntem ve bağlam
olarak kullanılır. Bu yaklaşımda ise gerçek hayattan
matematiğe doğru bir
yönelim söz konusudur. Birincisinde matematiksel
yapılar, kavramlar ve modeller idealleştirilmiş gerçek hayat durumlarında uygulanacak birer hazır
“obje” olarak ele alınırken ikincisinde ilgili matematiksel yapıların oluşturulması, geliştirilmesi ve
genelleştirilmesini ifade eden “sürece” daha çok
vurgu yapılmaktadır. Yazının tam PDF metni için tıklayınız.
Ayhan Kürşat ERBAŞ
Orta Doğu Teknik Üniversitesi
Orta Doğu Teknik Üniversitesi
Matematiksel Modelleme Çeşitleri
Matematiksel modelleme çeşitleri: dört kısma ayrılır.1.Deneysel modelleme,2.Teorik modelleme,3.Simülasyon modelleme, 4.Boyutsal analiz modelleme
1.Gözlenebilen verilere dayalı olarak oluşturulan grafikleri matematiksel olarak ifade edilmesine deneysel modelleme denir. Örneğin; dünyadaki sicaklık artışının grafik ile gösterimi bir deneysel modellemedir.
2.Matematiksel modelin formüle edilmesinde, verilerden çok teoriye dayanan farklı problem çözme süreci gerektiren modellemeye teorik modelleme denir. Caddelerdeki yaya geçidi ihtiyaçlarının belirlenmesi bir teorik modelleme örneğidir.
3.Genellikle matematiksel modeller ifade edilirken cebirsel semboller kullanılır. Bazı problemlerde çözümler, analitik olarak modellenemezler. Bu tür modellemelere simülasyon modeli adı verilir. Örneğin; türev kavramının bilgisayarda fizik sel anlamını verecek bir animasyon bir simülasyon modelidir.
4.Fiziğin temel özelliklerine dayalı oluşturulan modellere boyutsal analiz modeli denir. Bu tür modelleme, bilim ve teknolojide ilişkiyi biçimlendirmede kullanılır. Örneğin; boyutu kullanarak hız ve alan arasındaki ilişkiyi temsil eden matematiksel ifadeyi bulma bir boyutsal analiz modelidir.
Modelleme terimi, bütün modelleme süreçlerini açıklamasına karşın başlangıçta bir problemin matematiksel formülünü elde etme şeklinde daha sınırlı bir süreci açıklamak için kullanılabilir. Matematiksel modelleme aşağıdaki süreçlerden oluşur.
- Modelleme süreci,
- Problemin analizi,
- Problem belirleme ve matematiksel ifade,
- Model analizi ve teknikleri.
Kaynak: MEB Lise Matematik Programı-2005
Aşağıdaki Yazılar İlginizi Çekebilir!!!
Matematik Konularından Seçmeler
matematik
(301)
geometri
(133)
ÖSYM Sınavları
(61)
trigonometri
(56)
üçgen
(49)
çember
(36)
sayılar
(32)
fonksiyon
(30)
türev
(26)
alan formülleri
(25)
analitik geometri
(23)
dörtgenler
(19)
denklem
(18)
limit
(18)
belirli integral
(14)
katı cisimler
(12)
istatistik
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(6)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)




