Lineer Trigonometrik Denklemlerin Çözümü

Lineer Trigonometrik Denklemler: sin ve cos fonksiyonlarına bağlı olarak verilen birinci dereceden tek değişkenli a, b ve c sıfırdan farklı reel katsayılar olmak üzere aynı dereceden a.sinx+b.cosx=c şeklindeki denklemlere lineer(doğrusal) trigonometrik denklem adı verilir. Bu tip denklemlerin çözümünde eşitliğin her iki tarafı sinx (veya cosx) katsayısı olan a (veya b) ile bölünür, buna göre tekrar yazılan trigonometrik denklem gerekli özdeşlikler kullanılarak temel denklemlere dönüştürülür. (Bknz: Trigonometrik denklemlerin çözüm kümesi)


Homojen Trigonometrik Denklemler

sin ve cos fonksiyonlarına bağlı olarak verilen birinci veya ikinci dereceden tek değişkenli a ve b reel katsayılar olmak üzere aynı dereceden a.sinx+bcosx=0 şeklindeki denklemlere homojen denklem denir. Bu denklemlerin çözüm kümeleri bulunurken denklemler, tanjant veya cotanjant denklemlerine dönüştürülmeye çalışılır. Bunun için denklemin her iki tarafı sinx veya cosx ile taraf tarafa bölünür. (Bknz: Trigonometrik Denklemlerin Çözüm Kümesi)

Temel Trigonometrik Denklemlerin Çözümü

Trigonometrik fonksiyonlarla birlikte verilen denklemlerin çözüm kümelerinin bulunmasında trigonometrik fonksiyonların genel özelliklerinden ve birim çemberden yararlanılır. (Bknz. Trigonometrik Fonksiyonlar) Verilen açı ölçülerinin birim çember üzerinde gösterilmesi ve bu açı değerine esas ölçü olarak eşit olan diğer açıların da varlığının kabul edilmesi ile trigonometrik denklemlerin genel çözümleri yazılır. (Bknz: Birim Çember)


Cosx=a ve Tanx=a Denklemleri ve Çözüm kümesi

Trigonometrik denklemlerin çözüm kümesi yapılırken, birim çember üzerinden fonksiyonların aynı noktadaki açıların her ikisi birlikte alınır. Bölgelere göre değişen açılar aynı noktadaki değere eşit olduğundan genel çözüm kümesi istendiğinde, bütün bu açıları ifade edecek şekilde çözüm kümesi yazılır.
 

Sinx=a Denklemi ve Çözüm Kümesi

Trigonometrik denklemlerin çözüm kümesi yapılırken, birim çember üzerindeki açıların trigonometrik fonksiyonlara göre aldığı değerler dikkate alınarak genel çözüm yapılır.Aşağıda verilen sinx denklemi için, sin fonksiyonu aynı değer için birinci ve ikinci bölgede iki farklı açıya sahiptir.Bu nedenle genel çözüm işleminde bu dikkate alınır.


Sinx=a tipindeki ve sinx=cosy tipindeki denklem çözümlerine bir örnek verebiliriz. Sin ve Cos denklemlerinde iki fonksiyon kendi aralarında dönüştürülerek yukarıda belirtildiği şekilde denklemin genel çözümü yapılır.

Ayrıca Bakınız:

Aşağıdaki Yazılar İlginizi Çekebilir!!!