Matematik Konuları Arşivi

TYT Matematik Konuları: Temel kavramlar, sayı basamakları, bölme–bölünebilme, obeb–okek, rasyonel sayılar, ondalık sayılar, üslü sayılar, köklü sayılar, mutlak değer, oran–orantı, denklemler, eşitsizlikler, basit cebirsel işlemler, problemlerin tamamı (sayı, yaş, hareket, karışım, işçi-havuz, yüzde–kar–zarar, tablo–grafik), fonksiyonlara giriş, grafik yorumlama, temel geometri (açılar, üçgenler, çokgenler, dörtgenler), çember–daire, analitik geometriye giriş, veri analizi ve istatistik.

AYT Matematik Konuları: Sayı kümeleri, karmaşık sayılar, polinomlar, ikinci dereceden denklemler, ileri eşitsizlikler, parabol, mantık, modüler aritmetik, fonksiyonlar (türler, bileşke, ters, grafik), trigonometrinin tamamı (açılar, radyan, trigonometrik fonksiyonlar, denklemler, kimlikler), analitik geometri (nokta, doğru, çember, parabol), logaritma (tanım, kurallar, denklemler), diziler (aritmetik, geometrik, genel terim), limit, süreklilik, türev (kurallar, grafik, artan–azalan, max–min), integral (belirsiz, belirli, alan), kombinasyon–permütasyon–binom, olasılık, gelişmiş istatistik.
Sitemizde yukarıda belirtilen Matematik konularıyla ilgili mevcut yazılara aşağıdaki bağlantılara tıklayarak ulaşabilirsiniz.
| | Devamı... 0 yorum

Pisagor teoeremine yeni bir ispat

Pisagor teoremi, bir dik üçgenin kenarları arasındaki ilişkiyi tanımlayan bir bağıntıdır. Pisagor teoreminde, hipotenüsün (dik üçgenin en uzun kenarı) uzunluğunun karesinin, diğer iki kenarın karelerinin toplamına eşit olduğu belirtilir. Bu teorem, antik Yunan filozofu Pisagor'un adı ile literatürde yer almıştır. Teoremin çok çeşitli ispatları yapılmıştır. Daha önceki yazılarımızda konu ile ilgili ayrıntılı bilgiler verilmiştir.  (Bkz. Pisagor teoremi ispatı) Bu yazıda, Amerika'daki iki genç yetenekten (Ne'Kiya Jackson ve Calcea Johnson) süzülen farklı bir bakış açısı sunulmuştur.
 
Günümüzde bu teoreme yeni bir ispat metodu olarak; trigonometik yoldan ispatlama çalışması yapılmış ve bu yeni ispat matematik literatürüne kazandırılmıştır. New Orleans'taki St. Mary's Akademisi'nde son sınıf öğrencisi olan Ne'Kiya Jackson ve Calcea Johnson, okulda düzenlenen bir matematik yarışmasında Pisagor'un ispatı için yeni bir kanıt buldular. Ne'Kiya Jackson ve Calcea Johnson, Amerikan Matematik Derneği'nin bir toplantısında, buldukları bu ispatı, Pisagor Teoremi'nin yeni bir trigonometrik ispatı olarak jüriye sundular. Pisagor teoreminin trigonometrik ispatlarının bir zamanlar imkansız olduğu düşünülmesine rağmen, iki azimli lise öğrencisi tarafından bunun mümkün olduğu bir makale ile gösterilmiştir. 

sin²x+cos²x=1 özdeşliği ispatı

Birim çember üzerinden gösterilen en temel trigonometrik özdeşlik sin²x+cos²x=1 farklı bir bakış açısıyla çemberdeki açılar yardımıyla da gösterilebilinir. Aynı yayı gören çevre açıların ölçüleri birbirine eşittir. Buna göre Şekildeki sarı renkle gösterilen yayı gören açıların ölçüleri birbirine eşittir. Bu eşit ölçülü açıların tanjant değerleri yazılıp birbirine eşitlendiğinde trigonometrinin en temel özdeşliği olan sin²x+cos²x=1 özdeşliği elde edilmiş olur.

Normalde bu trigonometrik özdeşlik çember üzerindeki herhangi bir noktanın apsis ve ordinatları açı cinsinden yazıldıktan sonra pisagor teoremi yardımıyla gösteriliyordu. Burada sadece aynı açıların eğimleri (tanjant oranları) gösterilerek pisagor teoremine gerek kalmadan ispatlama yapılmıştır.

Çemberin parametrik denklemi

Bir çemberin parametrik denklemi, genellikle merkez koordinatları ve yarıçapına bağlı olarak trigonometriden yararlanılarak yazılır. Bir çemberin merkezi (a,b) ve yarıçapı r ise bu çemberin parametrik denklemi t bir açı olmak üzere: x(t)=a+r.cos⁡(t) ve y(t)=b+r.sin⁡(t) şeklindedir. Merkezil çemberin merkezi M(0,0) orijindir.

Çemberlerin birbirine göre durumları

Düzlemde verilen iki çemberin birbirine göre 3 temel durumu vardır. İki çemberin merkezleri arasındaki mesafeye d ve yarıçaplarına r1 ve r2 dersek buna göre çemberlerin durumlarını şöyle açıklayabiliriz: 
1) Çemberler birbiriyle kesişmez.Yani çemberlerin hiç ortak noktaları yoktur. d>r1+r2 

Çemberle doğrunun birbirine göre durumları

Bir düzlemde verilen bir çember ile bir doğru arasında üç temel durum vardır: 
1) Doğru Çemberi Kesmez (Çemberle doğrunun ortak bir noktası yoktur. Dıştan Ayrık) 
Verilen doğru ile çemberin kesişim kümesi boş küme ise doğru çemberin dışındadır. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d>r ilişkisi vardır Böylece doğru çemberi kesmez, doğru bu durumda çemberin dışında yer alır. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında,  elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri, sıfırdan küçük olur. Yani düzlem geometride denklemin reel kökü olmaz.
2) Doğru Çembere teğet olur. (Çemberle doğrunun ortak sadece bir noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi sadece tek nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d=r ilişkisi vardır Böylece doğru çembere teğet olur. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfıra eşit olur. Yani denklemin tek kökü olur.
3) Doğru Çemberi iki farklı noktada keser. (Çemberle doğrunun iki ortak noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi iki farklı nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d<r ilişkisi vardır Böylece doğru çemberi keser. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfırdan büyük olur. Yani denklemin iki farklı kökü olur.

Çemberin Analitik incelemesi

Geometri biliminde düzlemdeki sabit bir noktaya (merkez) eşit uzaklıktaki sonsuz sayıdaki noktaların oluşturduğu kümeye (kapalı eğriye) "çember" denir. Çemberin üzerindeki noktalara eşit uzaklıkta bulunan, çemberin tam ortasında yer alan sabit noktaya "çemberin merkezi" denir ve genellikle M veya O harfi ile gösterilir. Merkezi (a,b) olan ve yarıçapı r olan bir çember; Ç(M,r) şeklinde yazılır.  Çember merkezi ile çember üzerindeki herhangi bir nokta arasındaki uzaklığa çemberin "yarıçapı" denir ve genellikle "r" harfi (radius) ile gösterilir. Çemberin merkezinden geçerek çemberin üzerinde bulunan herhangi iki noktayı birleştiren en uzun doğru parçasına "çap" (diameter) adı verilir ve 2r ile gösterilir. 
Bir çemberin yay uzunluğunun tamamını veren ifadeye "çemberin çevresi" denir ve çemberin çevresi Çevre= 2πr formülüyle hesaplanır. Çemberin kendisi ve çemberin iç bölgesi de çembere dâhil edilirse bu plaka biçimine "daire" denir, daire bir yüzey (alan) belirtir. Yarıçapı r olan dairenin alanı: Alan=π.r2 formülüyle bulunur. Alan ve çevrede kullanılan π sayısı irrasyonel bir sayıdır. π=3.14159265359... devam eden irrasyonel sabit bir sayıdır.
Merkezi M(a,b) ve yarıçapı r olan bir çemberin genel denklemi şu şekildedir: (x−a)2+(y−b)2=r2 Bu çember denklemi, çember üzerindeki tüm noktaların merkez noktasına olan uzaklığının r olduğunu ifade eder. Esasında çember denklemi analitik geometride iki nokta arası uzaklık formülü ile oluşturulur. 
(x−a)2+(y−b)2=r2 çember denklemine çemberin standart denklemi denir. Örneğin orijin merkezli ve yarıçapı 5 birim olan bir çemberi (x−0)2+(y−0)2=5şeklinde yazabiliriz. Buradan orijin merkezli bu çember; x2+y2=25 olur. Merkez (3, -2) ve Yarıçapı r=4 olan bir çemberi, (x−3)2+(y+2)2=16 şeklinde yazabiliriz. 

1) Merkezi x ekseni üzerinde olan bir çemberin merkezi noktası M(a, 0) şeklindedir. Yani, merkezi x ekseni üzerinde olan çemberin y-koordinatı sıfırdır. Bu durumda Merkezi x ekseni üzerinde olan bir çemberin genel denklemi şöyle olur:  (x−a)2+y2=r2 olur. Bu çember, x ekseni üzerinde bir noktayı merkez alır ve y ekseni boyunca yukarı ya da aşağıya doğru simetrik olarak uzanır. Örneğin merkezi (2, 0) ve yarıçapı 6 olan bir çemberin denklemini (x−2)2+y2=36 şeklinde yazabiliriz. 

2) Merkezi y ekseni üzerinde olan bir çemberin merkezi M(0,b) şeklindedir. Yani, merkezi y ekseni üzerinde olan bir çemberin x-koordinatı sıfırdır. Bu durumda çemberin genel denklemi şöyle olur: x2+(y-b)2=r2 olur. Bu çember, y ekseni üzerinde bir noktada merkezlenmiştir ve x ekseni boyunca sağa ya da simetrik olarak uzanır. Örneğin; Merkezi (0,−3) ve yarıçapı 5 olan bir çemberin denklemi: x2+(y+3)2=25 olur. 

3) Merkezi orijin M(0, 0) üzerinde olan bir çemberin denklemi çemberin en basit ve standart halidir. Merkezi orijin M(0, 0) ve yarıçapı r olan çemberin denklemi: x2+y2=r2 olur. Bu çember, hem x hem de y eksenine göre simetriktir çünkü merkez orijin üzerindedir.
Örneğin Merkezi M(0, 0) ve yarıçapı 7 olan bir çemberin denklemi: x2+y2=49 şeklindedir. Merkezi M(0, 0) ve yarıçapı 9 olan bir çemberin denklemi: x2+y2=81 şeklindedir. 

Merkezi M(0, 0) ve yarıçapı 1 olan çembere birim çember denir trigonometrik fonksiyonları tanımlamada birim çember kullanılır. Birim çemberin denklemi: x2+y2=1 şeklindedir.

4) Merkezi M(a, b) ve yarıçapı r olan bir çember y eksenine teğet ise çemberin yarıçapı |a| olur ve çemberin merkezi a koordinatına bağlı olarak x ekseninin sağında ya da solundadır. M(a,b) ve yarıçapı r olan bir çember, y eksenine teğet ise bu çemberin denklemi: (x−a)2+(y−b)2=a2 şeklinde olur. Aynı denklemi r'ye bağlı olarak (x−r)2+(y-b)2=r2 şeklinde yazarız.

5) Merkezi M(a, b) ve yarıçapı r olan bir çember, x eksenine teğet ise çemberin yarıçapı |b| olur ve çemberin merkezi, b koordinatına bağlı olarak y ekseninin aşağısında ya da yukarısında yer alır. M(a,b) ve yarıçapı r olan bir çember x eksenine teğet ise denklemi: (x−a)2+(y−b)2=b2 şeklinde olur. Aynı denklemi r'ye bağlı olarak (x−a)2+(y-r)2=r2 şeklinde yazarız. 
6) Merkezi M(a, b) ve yarıçapı r olan bir çember, her iki eksene de teğet ise (x ve y eksenine teğet ise) çemberin merkezi M(a,b)=(±r,±r) şeklinde olur ve bölgelere göre dört farklı çember çizilebilir. Çemberin merkezi ve yarıçapı verildiğinde denklemi (x−a)2+(y−b)2=r2 olduğundan; merkez koordinatlarının bölgelere göre a=±r ve b=±r ihtimali olduğundan dört farklı çember yazılabilir. 
 
Buna göre birinci bölgedeki eksenlere teğet çember şöyle olur: (x−r)2+(y−r)2=r2 
İkinci bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y-r)2=r2 olur. 
Üçüncü bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y+r)2=r2 olur. 
Dördüncü bölgedeki eksenlere teğet çemberin denklemi de (x-r)2+(y+r)2=r2 olur. 
Eksenlere teğet olan bu çemberlerin merkez koordinatları bölgelere göre şöyledir: Birinci bölgede A(r,r) ; ikinci bölgede B (−r,r) ; üçüncü bölgede C(-r,−r) ; dördüncü bölgede D(r,-r) olur.
 
Bir çemberin standart denklemi denklemi (x−a)2+(y−b)2=r2 ifadesi açıldığında x2+y2+Dx+Ey+F=0 şeklinde çemberin genel denklemi elde edilir. Bu denklemde katsayılar olan D, E, F gerçek sayılardır. 

x2+y2+Dx+Ey+F=0 Denkleminin çember belirtmesi için x2 ve y2 terimlerinin denklemde kesinlikle olması ve x2 ve y2 terimlerin katsayılarının birbirine eşit olması gerekir. Ayrıca x.y çarpanı şeklinde bir terim bulunmamalıdır. Ayrıca denklemde elde edilecek r yarıçapının tanımlı olması gerekir. (r>0) 

Merkezi M(a,b) ve yarıçapı r olan çemberin standart denklemi: (x−a)2 + (y−b)2 = r2 çemberin standart denklemi binom özelliğinden yararlanarak azalan kuvvetlere göre açılırsa:
(x−a)2+(y−b)2=r2 x2 − 2ax + a2 + y2−2by + b2 = r2
x2+y2−2ax−2by + (a2+b2−r2) = 0 bulunur.
Bu ifade kısa bir şekilde D, E ve F katsayılarıyla D=−2a, E=−2b ve F=a2+b2−r2 olacak biçimde en sade halde düzenlenirse; x2+y2+Dx+Ey+F=0 çemberin genel denklemi elde edilir. Bu genel çember denkleminde, çemberin merkezi M(-D/2, -E/2) olur.
x2+y2+Dx+Ey+F=0 tam kareye tamamlama işlemi ile yarıçap ve merkez koordinatları D, E ve F cinsinden yazılabilir. Yarıçap ifadesinde eğer karekök içi negatif çıkarsa, bu bir gerçek çember belirtmez. (bu denklemin reel sayılarda çözümü yoktur)

Çemberin genel denklemininde çemberin diskiriminantı denebilecek D2+E2-4F ifadesine göre üç farklı durum söz konusu olur.
1) D2+E2-4F>0 ise verilen denklem bir çember belirtir. 
2) D2+E2-4F=0 ise verilen denklem bir çember belirtmez.Yarıçap r=0 olduğundan bu denklem bir nokta belirtir. Bu nokta çemberin merkez koordinatlarıdır. 
3) D2+E2-4F<0 ise verilen denklem bir çember  belirtmez. Yarıçap ifadesi karekök tanımlı olmadığından hesaplanamaz.
 
Herhangi üç noktadan geçen bir çemberin denklemini bulmak için, çemberin genel denklemini: x2+y2+Dx+Ey+F=0 şeklinde kabul ederiz ve verilen üç noktayı bu denkleme yerleştirerek bir denklem sistemi kurarız. Bu denklem sistemi ikişerli olarak çözülerek D,E,F katsayıları bulunur. Bu katsayılara göre çember denklemi yazılır. 
 
Örneğin verilen 3 nokta: A(1,2), B(2,3), C(1,0) ise bu noktalardan geçen çemberin denklemini bulmak için genel çember denklemi: x2+y2+Dx+Ey+F=0 olarak alınır ve her nokta x ve y yerine koyularak bir denklem sistemi kurulur. 
A(1, 2) noktası için:
12+22+D(1)+E(2)+F=0⇒1+4+D+2E+F=0⇒D+2E+F=−5 
B(2, 3) noktası için: 
4+9+2D+3E+F=0⇒2D+3E+F=−13
C(1, 0) noktası için: 
12+02+D(1)+E(0)+F=0⇒1+D+F=0⇒D+F=−1
Bu üç denklemi kendi arasında ikişerli olarak yoketme metodu ile çözersek sonuçta denklemin katsayılarını D=-6, E=-2 ve F=5 buluruz. Bu katsayılara göre çemberin genel denklemi: x2+y2−6x−2y+5=0 olur. Böylece bu çemberin merkezi M(3,1) ve yarıçapı da r=√5 olur.
 

Sembolik mantık

Sembolik mantık, semboller ve özel işaretler kullanarak mantıksal ifadelerin ve ilişkilerin analiz edildiği bir matematik dalıdır. Mantık ifadelerin sözel dille yazılması, matematiksel semboller yerine doğal dil kullanılarak yapılan bir işlemdir. Önermelerin doğruluk ya da yanlışlık durumunu belirten ifadeleri Türkçe veya başka herhangi bir doğal dilde yazılabilmesi, "sembolik dili sözel dile çevirme" olarak tanımlanır. 
Örneğin, p → q (okunuşu: p ise q) sembolik önermesi p ve q herhangi iki önerme olmak üzere: "Eğer hava yağmurluysa, o zaman sokaklar ıslaktır" biçiminde sözel olarak yazılabilir. Bu tür önerme ifadeleri; çıkarımda bulunma, akıl yürütme, argümantasyon, dilbilim ve felsefe gibi alanlarda önemli bir rol oynarlar. Önermeler, matematikte sembollerle temsil edilir ve kurulan mantıksal ifadelerin doğrulukları tablolar ve mantık yasaları incelenir. Bu şekilde, önermeler mantığında belirli kural ve prensiplere dayanarak mantıksal sonuçlar çıkarılabilir. Sembolik mantık, sözel türdeki ifadelerin matematiksel ve mantıksal ilişkilerini analiz ederek akıl yürütmeyi ve sonuç çıkarmayı kolay hale getirerek işlemlerin yorumlanmasını ve değerlendirilmesini sağlar. Sembolik mantık, matematiksel ve bilgisayar bilimleri gibi alanlarda sıklıkla kullanılan bir araçtır ve mantıksal çıkarım süreçlerini daha sistemli, daha hızlı, daha kolay ve kesin bir şekilde ele almayı sağlar.
"Matematiksel mantıkta, semboller kullanılarak ifadeler, dikden bağımsız olarak kendi mantık yasaları çerçevesinde kolaylıkla analiz edilirerek yorumlanır.
Sözel dille ifade edilen cümleler, çeşitli sembol ve bağlaçlar (operatörler) kullanılarak matematiksel dille yeniden yazılır. Sözel dille ifade edilen cümleleri matematiksel dille ifade etmek için bazı semboller ve bağlaçlar kullanabiliriz. Örneğin: "Bir sayının 5 katı, o sayıdan 15 fazladır." şeklindeki ifadeyi matematiksel olarak şu şekilde yazabiliriz: (5x = x + 15). "Bir dikdörtgenin uzunluğu, enini 3 birim aşar." cümlesini ifade ederken de (B = E + 3) sembolik dili kullanılabilir. Burada (B) uzunluğu, (E) eni temsil eder. Buna benzer yazılan matematiksel dil, gündelik kelimeler yerine semboller ve matematik operatörlerini kullanarak bilgi aktarmamızı sağlar. Bu sayede ifadeler daha kesin ve anlaşılır hale gelir.
Örnek:
"P: Bugün hava güneşlidir. Q: "Hava, 20 derecedir." şeklinde iki ifade verildiğinde, "Bugün hava güneşli ise hava 20 derecedir." bileşik önermesi, sembolik mantıkta (p → q) şeklinde gösterilebilir.
Örnek:
"A gerçek bir sayı ise, o zaman B de gerçek ve C asal sayıdır." önermesi sembollerle p → (q ∧ r) olarak ifade edilebilir. 
Örnek:
"120 sayısı 3 ile bölünebilir ve çift bir sayı ise bu sayı 6 sayısının tam katı olmaz." önermesi sembollerle (p ∧ q)→r' olarak ifade edilebilir. 
Örnek:
"Bir üçgenin çevresi tek sayı olursa bu üçgen ancak ve ancak dik üçgen veya çeşitkenar üçgen olur." önermesi sembollerle p→(q V r) olarak ifade edilebilir. 
Örnek:
"Ali, bir erkek ismidir veya Ay dünyanın uydusu değilse iki ile tam bölünebilen bir sayı, 7 den büyük olur." önermesi sembollerle (p V q')→(r V s) olarak ifade edilebilir. 
Örnek:
"Bir isim A ile başlamazsa yazılan kelimeler 3 harfli olur ya da son harfi t ile bitmez." önermesi sembollerle p'→(q ⊻ r') olarak ifade edilebilir. 

Sembolik mantıkta önermeler; genellikle p,q,r,s,t...vb gibi küçük harfle gösterilirken iki ya da daha fazla önerme, birbirine ∧, V, ⊻, →, ↔ gibi bağlaçlar yardımıyla bağlanarak daha karmaşık bileşik önermeler oluşturulur. 
Mantıkta evrensel ve kısmi niceleyiciler de sembolik olarak ifade edilebilir. Bir önermenin evrensel olarak doğru olup olmadığını belirleyen bir kavrama "evrensel niceleyici" denir. Evrensel niceleyici kavramı (∀), bir önermenin tüm durumlar için doğru veya yanlış olup olmadığını belirtir. Örneğin, "Her insan ölümlüdür" ifadesindeki "her" sözcüğü evrensel niceleyicidir çünkü ifade tüm insanlar için doğru bir hüküm belirtir. Buradaki "ölümlü olma" hükmünün dışına hiçbir insan çıkamaz, yani cümlede geçen "ölümlülük" ifadesi bütün insanları kapsar. Evrensel nicelendirmeler, mantıksal ifadelerde belirli bir evrendeki tüm öğeler için bir ifadenin geçerli olduğunu belirtmek için kullanılır. "Bütün kuşlar uçabilir" ifadesindeki "bütün" evrensel niceleyici kullanarak, her kuşun uçma yeteneğine sahip olduğunu belirtiriz. Bu nicelendiriciler, bir kümeye ait tüm nesneler veya kavramlar hakkında genelleştirmeler yapmamıza, kesin hüküm vermemize veya evrensel doğruları ifade etmemize yardımcı olur. Evrensel niceleyiciler genellikle "her", "tüm", "bütün" "kesinlikle", gibi kavramlar yardımıyla ifade edilir. Bu kavramlar, hükümde genel geçerlilik ve doğruluk ifade etmek üzere kullanılır. Evrensel niceleyicisi, "Üniversal Niceleyici" (Universal Quantifier) olarak da isimlendirilir.  "∀" sembolü ile temsil edilir ve bu sembol kullanıldığı yerde "her" veya "tüm" anlamına gelir, cümlenin başında yazılır. Örneğin, "∀x (P(x))" açık önermesi "her x için P(x)" anlamına gelir.
Mantıkta varlık nicelikleri, ifadelerin içerdikleri öğelerin miktarını belirleyen ve onların gruplama biçimini tanımlayan önemli kavramlardır. Bu nicelikler, mantıksal ifadelerin doğruluğunu ve anlamını belirlerken kullanılır ve ifadeleri daha spesifik hale getirir. Evrensel nicelik ifadeleri tüm öğeleri kapsarken, varlık niceleyici ifadeleri ifadenin bir kısmını belirtir. Hiçbir nicelik ifadesi ise hiçbir öğeyi içermediğini belirtirken, bazı nicelik ifadesi belirli bir kısmını kapsar ancak tümünü kapsamaz. 
Varlık Niceleyicisi, (Existential Quantifier) "∃" sembolü ile temsil edilir ve "bazı veya birkaç" anlamına gelir. Örneğin, "∃x (P(x))" açık önermesi "bazı x'ler için P(x)" anlamına gelir.
Sık kullanılan Evrensel ve varoluşsal nicelendiricilere ek olarak, mantıkta diğer önemli nicelendiriciler de bulunmaktadır:
Tekil Varoluş Nicelendirici: "∃!" şeklinde temsil edilir ve belirli bir özelliği karşılayan yalnızca bir örneğin varlığını ifade eder. 
Örnek: "∃!x (P(x))" ifadesi "P(x) özelliğini karşılayan yalnızca bir x var" anlamına gelir.
En Az n Varoluş Nicelendirici: "∃≥n" olarak gösterilir ve belirli bir özelliği karşılayan en az n örneğin varlığını belirtir.
Örnek: "∃≥3x (P(x))" ifadesi "P(x) özelliğini karşılayan en az üç x var" anlamına gelir.
Mantıksal nicelendiriciler, bir alan üzerinde nicelendirme yaparak ve bu öğelerin karşılaması gereken koşulları belirtirken mantıkta önemli bir rol oynarlar.
Bu niceleyiciler, matematiksel ifadeleri ve mantıksal önermeleri doğru bir şekilde tanımlamak ve analiz etmek için sıklıkla kullanılır.
| | | | Devamı... 0 yorum

Mantık doğruluk tabloları

Mantıkta doğru ya da yanlış bir hüküm bildiren ifadelere önerme denir ve önermeler genellikle p, q, r, s,... gibi küçük harflerle gösterilir. Verilen bir önerme doğru ise doğruluk değeri “1”, yanlış ise doğruluk değeri “0” dır. Böylece bir önermenin doğru ya da yanlış olma durumuna göre iki farklı doğruluk durumu vardır. Dolayısıyla birden fazla önerme olursa doğruluk durumu 2'nin kuvvetleri biçiminde değişiklik gösterir. n tane önermenin, 2n tane doğruluk durumu vardır. Bir mantıksal ifadenin doğru mu yanlış mı olduğunu gösteren tablolara doğruluk tablosu denir. Doğruluk tablosu, bir veya daha fazla basit ya da bileşik önermenin tüm olası doğruluk durumlarını ve bu durumlara karşılık gelen sonuçlarını tek parçada gösteren bir tablodur. Bağlaçların durumlarına göre oluşturulan önermelerin doğruluk durumları kolayca doğruluk tablosunda test edilebilir. 

Çift yönlü koşullu önerme

Çift yönlü koşullu önerme, "ancak" bağlacı ile kurulan bir önermedir. İki taraftan da koşulun sağlanmasını gerektirir. p ↔ q şeklinde sembolle gösterilir."p ancak ve ancak q ise" şeklinde okunur. p ↔ q önermesi esasında iki taraftan "ise" bağlacı ile kurulmuş koşullu önermenin "ve" bağlacı ile birleştirilmesiyle oluşmuştur. p ↔ q ≡ (p → q) ∧ (q → p)  Örneğin "Sınavı kazanırsan, ancak ve ancak üniversiteye gidebilirsin." önermesi çift yönlü koşullu önermeye örnek olarak verilebilir. 


"Ahmet derse gelirse, Ayşe de gelir." ve "Ayşe derse gelirse, Ahmet de gelir."cümlelerini tek bir ifadede birleştirebiliriz: "Ahmet ancak ve ancak Ayşe derse gelirse gelir." Bu cümlede iki farklı önerme vardır. p:"Ahmet derse gelir." ve q:"Ayşe derse gelir." Bu önermelerin birleşimi ile "ancak" bağlacı ile kurulmuş bir önerme olur. Mantıksal gösterimi: p ↔ q şeklindedir. Ahmet derse gelirse Ayşe ders gelir ve Ayşe ders gelirse Ahmet derse gelir." cümlesine eşdeğerdir. Cümlenin ifade ettiği anlam mantık açısından bir zorunluluk bildirip "Ahmet ve Ayşe'nin ikisi birlikte gelir ya da ikisi de gelmez" anlamındadır.
"Ancak ve ancak" bağlacı
nda, iki önermenin her ikisi doğruysa ya da her iki önermenin her ikisi yanlışsa sonuç doğru olur, önermelerden biri doğru diğeri yanlış ise sonuç yanlış olur. (1↔1 ≡ 1)   (0↔0 ≡ 1) p p→q koşullu önermesinin doğruluk değeri “1” ise bu koşullu önermeye gerektirme denir. (p → q) ≡ 1 Çift yönlü koşullu önermeye, "Çift gerektirme" de denilir. (p ↔ q ≡ 1)

"Bugün ancak ve ancak pazartesiyse ders vardır." (p ↔ q) önermesinde doğruluk durumu şu şekilde yazılabilir. Öncelikle burada iki farklı önerme vardır. p: "Bugün pazartesidir." q: "Ders vardır." Ancak ve ancak bağlacında kural "p ↔ q için p ve q aynı doğruluk durumuna sahipse önerme doğru değilse yanlıştır. Buna göre bu önermelere bağlı olarak (p ↔ q) önermesinin doğruluk durumunu inceleyelim: 

1 ↔ 1≡ 1 "Eğer bugün pazartesi ve ders varsa" önerme doğru olur.

1 ↔ 0≡ 0"Eğer bugün pazartesi ama ders yoksa" önerme yanlış olur.

0 ↔ 1≡0"Eğer bugün pazartesi değil ama ders varsa" önerme yanlış olur.

0 ↔ 0≡ 1 "Eğer bugün pazartesi değil ve ders de yoksa" önerme doğru olur.

 Mantık Konusuyla ilgili özet ders notuna ulaşmak için tıklayınız. (PDF)

Koşullu Önerme

Koşullu önerme, mantıkta bir şarta bağlı olarak kurulan önermelerdir. Şartın gerçekleşme durumuna göre koşullu önermenin doğruluk durumu değişiklik gösterir. p → q şeklinde yazılır ve şu anlama gelir: "p doğruyken q önermesi yanlış ise bileşik önerme yanlış, diğer tüm durumlarda önerme doğru olur. "Yağmur yağarsa yerler ıslanır" önermesi bir koşula bağlı olduğundan ise bağlacı ile kurulmuş bir bileşik önermedir. "yağmur yağıyorsa" (p), "yerler ıslaktır" (q) gibi iki ayrı önerme birbirine bağlaçla (ise) bağlanmıştır. "yağmur yağıyorsa" (p ≡ 1) "yerler ıslanmaz" (q≡0) durumu mümkün olmadığından yani 1 → 0 ≡ 0 olacağından bu durumda bileşik önerme yanlış olur. Bunun harici tüm durumlarda önerme doğru olur.


 Tabloda verilen tüm durumları inceleyelim.

1 → 1 yağmur yağıyor, yerler ıslanıyor → Beklendiği gibi, önerme doğru 

1 → 0 Yağmur yağıyor ama yerler ıslanmıyor → Beklenen olmadı, önerme yanlış.

0 → 1 Yağmur yağmıyor ama yerler başka bir sebeple ıslanmış → Yine de önerme doğru sayılır.

0 → 0 Yağmur yağmıyor, yerler ıslanmıyor → Koşul gerçekleşmediği için önerme doğru kabul edilir.


Koşullu önermelerin mantığında, sadece koşul gerçekleşip sonuç gerçekleşmezse önerme yanlıştır. Bunun (1 → 0 ≡ 0) haricindeki tüm durumlarda önerme doğru olur.  Ayrıca bir koşullu önermenin karşıt tersi de kendisine doğruluk durumu bakımından denk olur. Örneğin "Eğer yağmur yağarsa, zemin ıslanır." (A → B) "Eğer zemin ıslanmıyorsa, yağmur yağmamıştır." (B' →A') Bu iki cümle birbirinin denk önermeleridir (A → B) ≡ (B' →A') çünkü her durumda, biri doğruysa, diğeri de doğru olur; biri yanlışsa, diğeri de yanlış olur. 

Bir koşullu önermenin tersi, karşıtı ve karşıt tersi bulunabilir. Buna göre "Yağmur yağarsa yerler ıslanır." (p → q) önermesini inceleyelim: 

(p → q): "Yağmur yağarsa yerler ıslanır."

Koşullu Önermenin karşıtı (Converse) (q → p)
"Yağmur yağarsa yerler ıslanır." önermesinde iki önermenin yerleri değiştirilir. Yani sonuç ile koşulun yerleri değişir.  Karşıt önerme, orijinal önerme ile doğruluk durumu bakımından eşdeğer değildir.

(q → p): "Yerler ıslanırsa, yağmur yağar."

Koşullu Önermenin tersi ((Inverse) (p' → q')
"Yağmur yağarsa yerler ıslanır." önermesinde her iki önermenin yerleri değiştirilmeden olumsuzları alınır. Yani her iki tarafın sadece değili alınır. Ters önerme, orijinal önerme ile doğruluk durumu bakımından eşdeğer değildir.

 (p' → q'): "Yağmur yağmazsa, yerler ıslanmaz." 

Koşullu Önermenin karşıt tersi (Contrapositive) (q' → p') "Yağmur yağarsa yerler ıslanır." önermesinde her iki önermenin hem yerleri değiştirilir hem de olumsuzları alınır.  Karşıt ters önerme, orijinal önerme ile doğruluk durumu bakımından eşdeğerdir. Bu önerme, orijinal önerme ile mantıksal olarak denk kabul edilir..Yani biri doğruysa diğeri de kesinlikle doğrudur. (p → q) ≡ (q' →p')

(q' → p') "Yerler ıslanmazsa, yağmur yağmaz."

"İse" bağlacı ile kurulmuş bi koşullu önerme "veya" bağlacı kullanılarak da yazılabilir. Her ne kadar günlük kullanımda böyle bir kullanım yaygın olmasa da mantıksal açıdan (p → q) ≡ (p' ∨ q) önermesi birbirine doğruluk durumu bakımından denktir. "Eğer çalışırsan, başarılı olursun." (p → q) önermesi (p: çalışırsın, q: başarılı olursun) "Veya" bağlacıyla "Çalışmazsan veya başarılı olursun." (p' ∨ q) şeklinde yazılır.

| | | | Devamı... 0 yorum

"Ve, Veya, Ya da" Bağlaçları

"VE" BAĞLACI: (mantıksal olarak sembolü ile gösterilir), iki önermenin birlikte doğru olması durumunda doğru olan bir mantıksal bağlaçtır. Başka bir deyişle, A ∧ B ifadesi (A ve B), her ikisi de doğruysa doğru olur; ancak biri bile yanlışsa, tüm ifade yanlıştır. "Ve" bağlacı, doğru bir sonucu elde etmek için her iki hükmün de yerine gelmesi gerekir. Bu bağlacın kullanıldığı bir bileşik önerme, yalnızca her iki önerme de doğruysa doğru olur. Bu nedenle kesin ayrım yapılması gereken durumlarda sıklıkla kullanılır.

"Evin içinde ışık yanıyor ve dışarıda güneşli bir hava var."
(Bu cümlede, "ışığın yanması" ve "dışarıda güneşli bir hava olması" koşulları, her ikisi de doğru olduğunda, tüm önerme doğru olur.)

"Bugün yağmur yağıyor ve hava -4 derece."
(Bu örnekte, hem "yağmur yağması" hem de "havanın -4 derece olması" durumunun doğru olması durumunda tüm önerme doğru olur.) 

| | | | Devamı... 0 yorum

Önerme Nedir?

Mantıkta en küçük birim önermedir. Önerme, mantığın temel yapı taşlarından biridir ve genellikle sembolik mantıkta incelenir. Önerme, mantıkta, doğru ya da yanlış olabilen, bir düşünceyi ifade eden ve bir değer taşıyan cümle veya ifadedir. Başka bir deyişle, bir önerme, belirli bir durumu veya gerçeği belirten bir ifadedir ve bu ifade doğru ya da yanlış olabilir. Ancak bir önerme; soru, istek, emir ya da ünlem cümlesi gibi doğruluğu değerlendirilemeyen bir şey olamaz. “Bugün hava güneşlidir.” bir önermedir, çünkü bu ifade herhangi bir gerçekliğe karşılık gelir ya da gelmez; bu da onun doğru ya da yanlış olması anlamına gelir. Ancak “Merhaba!”, “Lütfen kitabı uzatır mısın?” gibi ifadeler bir önerme değildir, çünkü bu cümleler, hüküm belirtmezler ve doğruluk değeri taşımazlar. Bir önermeyi oluşturan şey, anlamının açık ve çelişkisiz olmasıdır. Belirsiz, çok anlamlı ya da mecazi dil kullanmak mantık için sorunludur, çünkü mantık olabildiğince net, tanımlı ve kesin yargılarla çalışır.

Mantık, düşüncenin içeriğiyle değil, onun biçimiyle, yani yapısıyla ilgilenir. Bir düşünce doğru olabilir ama mantıklı olmayabilir; ya da bir düşünce mantıksal olarak kusursuz olabilir ama içerdiği bilgi gerçek dışı olabilir. Mantık bu iki alanı  birbirinden ayırır: doğruluk (truth) ve geçerlilik (validity). Mantıkta "Geçerlilik", bir düşünce zincirinde yani çıkarımda, öncüller doğru olduğunda sonucun da zorunlu olarak doğru olması hâlidir. Yani, eğer önermeler doğruysa ve aradaki bağ mantıksal kurallara uygunsa, sonuç tartışmasız biçimde doğrudur. Bu durumda çıkarım geçerlidir, çünkü biçimsel yapısı sağlamdır. 
Mantıkta "Doğruluk" (veya gerçeklik), bir önermenin gerçek dünyadaki gerçek durumu yansıtıp yansıtmadığı ile ilgili bir kavramdır. Başka bir deyişle, bir önerme doğru olduğunda, onun içeriği gerçek dünya ile uyumludur. Eğer bir önerme gerçek dünyada doğruysa, doğru olarak kabul edilir; eğer gerçek dünyada yanlışsa, yanlış olarak değerlendirilir. Örneğin, "2 + 2 = 4" önermesi doğru bir önermedir, çünkü bu matematiksel bir gerçeği yansıtır. Örneğin, "Ay, Mars'ın uydusudur." önermesi ise yanlış bir önermedir.
| | | | Devamı... 0 yorum

Verilerin grafikle gösterimi

İstatistiksel araştırma sürecinde belli bir soru etrafında toplanan veriler, düzenlenerek analize hazır hâle getirilir. Veri toplama planı yapma ve verileri analize hazır hâle getirme süreci, oluşturulan istatistiksel araştırma sorularına göre yapılmalıdır. Toplanan veriler analiz edildikten sonra bulguların yorumlanması ve gösterilmesi (sunumu) aşamasına geçilir. Verilerin gösteriminde çizgi, sütun, daire, kutu, serpme, histogram ve nokta dağılımı gibi grafikler kullanılır. 

Merkezi Yayılım Ölçüleri

Merkezi Yayılım Ölçüleri: Bir veri grubundaki elemanların, merkezi eğilim ölçüsü etrafındaki yayılımını gösteren yani merkezi eğilim ölçüsüne yakın olup olmadığını belirten değerlerdir.

1)Açıklık (A): Bir veri grubundaki en büyük ile en küçük değer arasındaki farktır.

Örnek: 2,4,6,7,10,14,16,17,17,18 veri grubunun açıklığını bulalım.

Veri grubundaki en büyük değer 18, en küçük değer 2 olduğundan veri grubunun açıklığı 18-2=16 olur.

2)Çeyrekler Açıklığı (ÇA): Bir veri grubu küçükten büyüğe sıralandığında ortanca (medyan) veri grubunu alt ve üst iki gruba ayırır. Alt ve üst grubun her birinin ortancasına sırasıyla alt çeyrek ve üst çeyrek denilir. Üst çeyrek ve alt çeyrek arasındaki farka çeyrekler açıklığı denir.

Örnek: 2,4,6,7,10,14,16,18,20 veri grubunun çeyrekler açıklığını bulalım.

Önce grubun medyanını bulalım. 2,4,6,7,10,14,16,18,20 Grubun medyanı 10’dur. Medyanın üst ve alt gruplarının medyan değerlerini bulalım. Alt grup için: 2,4,6,7 alt çeyrek (4+6)/2=5 Üst grup için: 14,16,18,20 üst çeyrek (16+18)/2=17 Alt çeyrek ve üst çeyreklerin farkını bulalım. 17-5=12 veri grubunun çeyrekler açıklığı 12 olur.

Merkezi Eğilim Ölçüleri

İstatistiksel araştırma sürecinde üçüncü aşama verilerin analizi ve yorumlanması; toplanan veriler düzenlendikten sonra analiz aşamasına geçilir. Analiz sonucu elde edilen bulgular, tablo ve grafiklerle gösterilerek araştırma sorusu kapsamında yorumlanır.

Ki-kare (x²) testi hesaplaması

İki yönlü çapraz tablolar, istatistiksel test ve analizler için temel oluşturur. İki kategorik değişkende  en yaygın olarak kullanılan testlerden biri Ki-kare testidir. Bu test, iki kategorik değişkenin bağımsız olup olmadığını incelemek için kullanılır.
Ki-kare (x²) testi, iki kategorik değişken arasındaki ilişkinin istatistiksel olarak anlamlı olup olmadığını değerlendirmek amacıyla kullanılan temel bir istatistiksel yöntemdir. Bu test, gözlenen frekanslar ile değişkenlerin bağımsız olması durumunda beklenen frekanslar arasındaki farkları inceleyerek, değişkenlerin birbirinden etkilenip etkilenmediğini ortaya koyar. Ki-kare testi, özellikle nominal veya ordinal ölçekteki kategorik değişkenler için uygundur ve araştırmacılara değişkenler arasında ilişki olup olmadığını güvenilir bir şekilde gösterir.
Testin hesaplama mantığı, her hücredeki gözlenen frekans ile beklenen frekans arasındaki farkın karesinin, beklenen frekansa bölünmesi ve tüm hücreler için bu değerlerin toplamının alınması şeklindedir. Beklenen frekanslar, iki değişkenin bağımsız olması durumunda, satır ve sütun toplamlarının çarpımı ile genel toplamın bölünmesi yoluyla hesaplanır.  Örneğin, bir okulda erkek ve kız öğrencilerin spor yapma durumunu inceleyen bir araştırmayı ele alalım. Bu araştırmaya göre erkek öğrencilerden 30’u spor yaparken 20’si yapmamaktadır; kız öğrencilerden ise 25’i spor yapmakta 25'i de spor yapmamaktadır. Bu veriler çaproz tabloda gösterilir. Bu tabloda her hücre için beklenen frekans hesaplanır; örneğin erkek ve spor yapanlar için beklenen frekans, toplam erkek sayısı ile toplam spor yapan sayısının çarpımının genel toplamın bölümüyle bulunur. Gözlenen ve beklenen frekans arasındaki farklar, test istatistiğine katkıda bulunur. Tüm hücreler için hesaplamalar yapıldıktan sonra bulunan x² değeri, istatistiksel tablolar veya yazılımlar aracılığıyla p-değeri ile karşılaştırılır. P-değeri belirlenen anlamlılık düzeyinden (genellikle 0,05) küçük ise, iki değişken arasında istatistiksel olarak anlamlı bir ilişki olduğu sonucuna varılır; aksi takdirde değişkenler bağımsız kabul edilir. 
Ki-kare testi, eğitim araştırmalarında öğrencilerin performans ve tercihleri, sağlık araştırmalarında hastalık durumu ile risk faktörleri, sosyal bilimlerde demografik özelliklerle davranış ilişkilerini incelemek gibi pek çok alanda kullanılmaktadır. Bu yönüyle, kategorik verilerin analizi ve ilişkilerin değerlendirilmesi için güvenilir ve etkili bir yöntem olarak kabul edilir.
Konuyu bir çapraz tablo üzerinden basit bir örnekle açıklayalım ve Ki kare hesaplamasını bir hücre üzerinden yapalım:

İki yönlü çapraz tablolar

İki yönlü çapraz tablo, diğer bir adıyla iki boyutlu kontenjans tablosu, istatistiksel araştırmalarda iki kategorik değişken arasındaki ilişkiyi görselleştirmek ve analiz etmek için kullanılan temel araçlardan biridir. Bu tablolar, bir değişkenin kategorilerini satırlarda, diğer değişkenin kategorilerini ise sütunlarda gösterir ve her hücrede iki değişkenin kesişimine ait gözlem sayısı, yani frekans değeri yer alır. Böylece, araştırmacılar değişkenler arasındaki olası ilişkileri hem sayısal hem de görsel olarak değerlendirme imkânı bulurlar. 
İki yönlü çapraz tabloların en önemli özelliklerinden biri, iki kategorik değişken arasındaki ilişkiyi ortaya koymalarıdır. Tabloyu inceleyerek hangi kategorilerin birlikte daha sık veya daha az gözlendiği görülebilir. Örneğin, bir araştırmada cinsiyet ile spor yapma durumu arasındaki ilişki inceleniyorsa, tablo sayesinde erkeklerin ve kadınların spor yapma alışkanlıkları karşılaştırılabilir. Hücrelerde sadece gözlem sayıları değil, aynı zamanda yüzde veya oran değerleri de gösterilebilir. Bu, özellikle farklı büyüklükteki grupların karşılaştırılmasında anlamlı bilgiler sağlar. Örneğin, bir okulda erkek ve kız öğrencilerin spor yapma oranlarını karşılaştırmak istiyorsanız, hücrelerdeki yüzdeler gruplar arasındaki farklılıkları daha net bir biçimde gösterir. 
Çapraz tabloların bir diğer avantajı, verileri görselleştirerek yorumlamayı kolaylaştırmasıdır. Tablodaki sayısal dağılımlar, hangi kategorilerin birbirine bağlı olabileceğini görsel olarak gösterir ve araştırmacının ilişkileri hızlıca değerlendirmesine imkân tanır. Örneğin, erkek ve kadınlar arasında spor eğilimleri hakkında bir araştırma kapsamında toplanan verilere göre oluşturulan çapraz tabloya bakarak, erkeklerin spor yapma eğiliminin kadınlara göre daha yüksek veya düşük olduğunu gözlemlemek mümkündür. Tabloya dönüştürülen veriler arasında hızlı bir şekilde istatistiksel analiz ve yorumlama yapılabilir. Çapraz tablo sayesinde araştırmacı, “Erkekler mi, kadınlar mı daha fazla spor yapıyor?” gibi soruları hızlıca inceleyebilir ve istatistiksel analiz yapabilir. 
İki yönlü çapraz tablolar, istatistiksel test ve analizler için temel oluşturur. İki kategorik değişkende en yaygın olarak kullanılan testlerden biri Ki-kare testidir. Bu test, iki kategorik değişkenin bağımsız olup olmadığını incelemek için kullanılır. Çapraz tabloda yer alan frekanslar ve hücrelerdeki gözlemler, Ki-kare testi hesaplamalarına temel teşkil eder ve araştırmacıya değişkenler arasındaki ilişkinin anlamlı olup olmadığını gösterir. 

Ki-kare (x²) testi, iki kategorik değişken arasındaki ilişkinin istatistiksel olarak anlamlı olup olmadığını değerlendirmek amacıyla kullanılan temel bir istatistiksel yöntemdir. Bu test, gözlenen frekanslar ile değişkenlerin bağımsız olması durumunda beklenen frekanslar arasındaki farkları inceleyerek, değişkenlerin birbirinden etkilenip etkilenmediğini ortaya koyar. Ki-kare testi, özellikle nominal veya ordinal ölçekteki kategorik değişkenler için uygundur ve araştırmacılara değişkenler arasında ilişki olup olmadığını güvenilir bir şekilde gösterir.
Testin hesaplama mantığı, her hücredeki gözlenen frekans ile beklenen frekans arasındaki farkın karesinin, beklenen frekansa bölünmesi ve tüm hücreler için bu değerlerin toplamının alınması şeklindedir. Beklenen frekanslar, iki değişkenin bağımsız olması durumunda, satır ve sütun toplamlarının çarpımı ile genel toplamın bölünmesi yoluyla hesaplanır.  Örneğin, bir okulda erkek ve kız öğrencilerin spor yapma durumunu inceleyen bir araştırmayı ele alalım. Bu araştırmaya göre erkek öğrencilerden 30’u spor yaparken 20’si yapmamaktadır; kız öğrencilerden ise 25’i spor yapmakta 25'i de spor yapmamaktadır. Bu veriler çapraz tabloda gösterilir. Bu tabloda her hücre için beklenen frekans hesaplanır; örneğin erkek ve spor yapanlar için beklenen frekans, toplam erkek sayısı ile toplam spor yapan sayısının çarpımının genel toplamın bölümüyle bulunur. Gözlenen ve beklenen frekans arasındaki farklar, test istatistiğine katkıda bulunur. Tüm hücreler için hesaplamalar yapıldıktan sonra bulunan x² değeri, istatistiksel tablolar veya yazılımlar aracılığıyla p-değeri ile karşılaştırılır. P-değeri belirlenen anlamlılık düzeyinden (genellikle 0,05) küçük ise, iki değişken arasında istatistiksel olarak anlamlı bir ilişki olduğu sonucuna varılır; aksi takdirde değişkenler bağımsız kabul edilir. 
Ki-kare testi, eğitim araştırmalarında öğrencilerin performans ve tercihleri, sağlık araştırmalarında hastalık durumu ile risk faktörleri, sosyal bilimlerde demografik özelliklerle davranış ilişkilerini incelemek gibi pek çok alanda kullanılmaktadır. Bu yönüyle, kategorik verilerin analizi ve ilişkilerin değerlendirilmesi için güvenilir ve etkili bir yöntem olarak kabul edilir.
Konuyu bir çapraz tablo üzerinden basit bir örnekle açıklayalım ve Ki kare hesaplamasını bir hücre üzerinden yapalım:
Bu örnekteki bütün hücreler için geçerli ki-kare testi sonuçları için ayrıntılı olarak aşağıdaki bağlantıyı inceleyebilirsiniz: 
 
Örnekte verilen çapraz tabloda satırlar cinsiyeti (Erkek, Kadın), sütunlar ise spor yapma durumunu (Yapan, Yapmayan) göstermektedir. Her hücre, ilgili kategorilerin kesişimindeki gözlem sayısını ifade etmektedir. Örneğin, tablodaki “Erkek – Spor Yapan” hücresinde yer alan 30 değeri, araştırmaya katılan 50 erkek öğrenciden 30’unun spor yaptığını göstermektedir. Bu tablo sayesinde araştırmacı, “Erkekler mi, kadınlar mı daha fazla spor yapıyor?” gibi soruları hızlıca inceleyebilir ve aynı zamanda Ki-kare testi ile iki değişken arasındaki ilişkinin istatistiksel olarak anlamlı olup olmadığını değerlendirebilir. Sonuç olarak, iki yönlü çapraz tablolar, iki kategorik değişken arasındaki ilişkileri sistematik ve anlaşılır bir şekilde sunmak, frekans ve oran dağılımlarını gözlemlemek ve istatistiksel analizler için temel oluşturmak açısından oldukça değerli araçlardır. Bu tablolar, araştırmacılara hem görsel hem sayısal veri analizi imkânı sunarak bilimsel çalışmalarda güvenilir ve açıklayıcı sonuçlar elde etmelerini sağlar.
 
Göreli sıklık tablosu 
Çapraz tablolarda toplam frekanslara göre izafi %'lik değerler (Göreli sıklık değerleri) hesaplanabilir.  Göreli sıklık tablosu, bir veri setindeki her bir kategorinin toplam gözlem sayısına göre oranını veya yüzdesini gösteren tablodur; başka bir deyişle, her kategorinin veri setindeki ağırlığını veya payını görselleştirir. Toplam gözlem sayısı 1 veya yüzde 100 olarak kabul edilir ve her hücrede sadece frekans değil, frekansın toplam içindeki oranı yer alır. Kategorik veriler için yaygın olarak kullanılır ve verilerin dağılımını daha net gösterir. Yukarıdaki spor örneğinde toplam gözlem sayısına göre erkeklerin spor yapma oranı 0,30 (%30), erkeklerin spor yapmama oranı 0,20 (%20), kadınların spor yapma oranı 0,25 (%25) ve kadınların spor yapmama oranı 0,25 (%25) şeklindedir. Yani Toplam öğrencilere göre erkeklerin göreli sıklık değeri 30 ÷ 100 = 0,30 yaklaşık %30 Toplam öğrencilere göre kadınların göreli sıklık değeri 20 ÷ 100 = 0,20 yaklaşık %20 Toplam öğrencilere göre erkeklerin göreli sıklık değeri 25 ÷ 100 = 0,25 yaklaşık %25 Toplam öğrencilere göre kadınların göreli sıklık değeri 25 ÷ 100 = 0,25 yaklaşık %25 olur. Aynı şekilde Spor yapanlara göre erkeklerin göreli sıklık değeri 30 ÷ 55 ≈ 0,545 yaklaşık %54,5 Spor yapanlara göre kadınların göreli sıklık değeri 25 ÷ 55 ≈ 0,455 yaklaşık %45,5 Spor yapmayanlara göre erkeklerin göreli sıklık değeri 20 ÷ 45 ≈ 0,444 yaklaşık %44,4 Spor yapmayanlara göre kadınların göreli sıklık değeri 25 ÷ 45 ≈ 0,556 yaklaşık %55,6 olur.

Veri toplama yöntemleri

1. Birincil Veri Toplama Yöntemleri: Birincil veriler, araştırmacının doğrudan topladığı ve orijinal verileridir. Bu yöntemle elde edilen veriler araştırmanın özel gereksinimlerine göre toplanır. Anket, gözlem, deney, test, mülakat ve görüşmeler birincil veri toplama yöntemleridir.
2. İkincil Veri Toplama Yöntemleri: İkincil veriler, başka bir araştırmacı veya kurum tarafından daha önce toplanmış olan hazır verilerin kullanılmasıdır. Bu yöntem, genellikle daha düşük maliyetli ve daha az zaman alıcıdır çünkü araştırmacı hazır veri kaynaklarına başvurur. Resmî istatistikler, akademik yayınlar ve raporlar, kurumsal veri tabanları, medya ve haber kaynakları, dijital veri tabanları ve internet kaynakları ikincil veri toplama yöntemleridir.
 
Birincil veri toplama yöntemleri, araştırma için gerekli bilgilerin sistemli bir şekilde elde edilmesini sağlayan tekniklerdir. Bu yöntemler, araştırmanın amacına ve veri türüne göre tek başına ya da birlikte kullanılabilir. Kısaca şöyle açıklanabilir:
1. Anket: Katılımcılara yazılı sorular yöneltilerek bilgi toplama yöntemidir. Çok sayıda kişiden hızlı veri elde etmeye uygundur. 
2. Gözlem: Kişilerin davranışlarını doğal ortamlarında izleyerek veri toplama sürecidir. Doğrudan ve gerçek zamanlı bilgi sağlar. 
3. Görüşme (Mülakat): Araştırmacı ile katılımcı arasında yüz yüze, telefonla veya çevrim içi yapılan soru-cevap tekniğidir. Derinlemesine bilgi verir. 
4. Deney: Kontrollü bir ortamda değişkenlerin etkisini incelemek için kullanılan yöntemdir. Neden–sonuç ilişkisi kurmaya uygundur. 
İkincil veri toplama yöntemleri genelllikle literatür taraması şeklinde gerçekleşir. Burada daha önceden başkaalrı tarafından hazırlanmış Raporlar, istatistikler, tarihî kayıtlar, belgeler, resmi veriler gibi mevcut kaynaklardan bilgi toplama işlemi yapılır.

Veri toplama planı aşamaları

İki kategorik değişkene dayalı veri toplama sürecinde başarılı sonuçlara ulaşabilmek için sistematik bir yaklaşım benimsemek büyük önem taşır. Sistematik olmak, problemi çözmeye adım adım, düzenli ve mantıklı bir şekilde ilerleyerek yaklaşmak anlamına gelir. Bu yaklaşım yalnızca çözüm sürecini kolaylaştırmakla kalmaz, aynı zamanda yapılan çalışmanın izlenebilir, tekrarlanabilir ve hataya daha az açık olmasını da sağlar. Sistematik bir yöntemin sağladığı birçok avantaj vardır. Öncelikle süreç açık ve anlaşılır olduğu için araştırmanın her aşaması rahatlıkla takip edilebilir. Adımların düzenli ilerlemesi olası hataların erken fark edilmesine imkân tanır ve zaman ile kaynakların daha etkili kullanılmasını sağlar. Ayrıca karmaşık araştırma problemleri daha küçük ve yönetilebilir parçalara ayrılarak sürecin daha iyi kontrol edilmesi mümkün olur. Bu sayede belirsizlikler azalır ve araştırmacıya daha net bir yol haritası sunulur.
 

Aşağıdaki Yazılar İlginizi Çekebilir!!!

Matematik Konularından Seçmeler