Fibonacci Dizisi ve Vahdeti Vücud Felsefesi

Matematik dersinde Fibonacci sayı dizisini incelerken, tasavvuf felsefesindeki Vahdet-i Vücûd anlayışıyla arasında benzerlik olabileceği fikri aklıma geldi. Bu konu üzerinde biraz araştırma yapınca bu benzerliğin makul olabileceğine ikna oldum. Şimdi bu konuyu matematik ve ilahiyat ekseninde değerlendirmek istiyorum. Önce her iki kavramın tanımlarını verip, ardından bu görüşleri ortaya koyan kişilerden Muhyiddin İbn Arabi ve matematikçi Leonardo Pisano Fibonacci"nin hayatlarına dair izlere bakacağız. Yazının sonunda da savundukları ve ortaya koydukları görüşlerin hangi yönlerden birbirine benzer olabileceğini göstermeye çalışacağım. En sonunda sonuç ve değerlendirme ile yazıyı bitireceğiz.
"Fibonacci sayı dizisi" ile "Vahdet-i Vücûd" anlayışı, ilk bakışta İslam tasavvufu ve matematik gibi  birbirinden oldukça farklı iki alana ait gibi görünse de aralarında güçlü bir benzerlik vardır. Biri matematik, diğeri tasavvuf felsefesine ait olmasına rağmen bu iki konu derinlemesine incelendiğinde, birbiriyle anlam, düzen ve bütünlük açısından önemli benzerlikler taşır. Bu benzerlikler özellikle sonsuzluk, ilk varlık, nizam ve düzen, bütün-parça arasındaki ilişkiler gibi temel bazı felsefi kavramlarda ortaya çıkar. Fibonacci dizisi, her sayının kendisinden önce gelen iki terimin toplamı olmasıyla oluşan, sonsuza kadar devam eden bir sayı dizisidir. 1 den başlayarak ardınca belli bir kural içinde düzenli sayılar gelir. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … Bu dizinin ardışık iki terimi birbiriyle oranlandığında bu sonucun matematikte "altın oran" adı verilen Fi sayısına (φ ≈ 1.618...) yaklaştığı görülür. Bu oran, yalnızca matematiksel bir yapı değil; doğada, insan vücudunda, yaprak diziliminden deniz kabuklarına, galaksi şekillerinden DNA spiral yapısına kadar birçok yerde gözlemlenen sabit bir oranı ve düzeni temsil eder. Altın oran hakkında daha farklı detaylı bilgiler için önceki yazımızı okuyabilirsiniz.

Vahdet-i Vücûd, İslam tasavvufunda derin bir düşünce sistemidir. Buna göre evrende hakiki anlamda var olan tek şey Allah’tır. Allah dışındaki tüm varlıklar—insanlar, doğa, yıldızlar, hayvanlar ve zaman—mutlak anlamda var değildir; yalnızca Allah’ın varlığından izler taşır, bütün mahlukat O’nun isim ve sıfatlarının yansımalarıdır. Çokluk gibi görünen her şeyin ardında, aslında bir ve tek olan "Varlık" vardır. Bu nedenle “varlıkların birliği” anlamına gelen vahdet-i vücud, görünen çokluğun ardında "gizli teklik" gerçeğini ifade eder. Burada anlatılan vahdet-i vücud, Batı felsefesindeki panteizmle karıştırılmamalıdır; çünkü vahdet-i vücudda mutlak varlık, hem her şeyin özünde hem de her şeyin ötesindedir. Panteizmde Tanrı, evrenle özdeşleşmiş olur ki bu da hatalı bir görüştür. Oysa vahdet-i vücud anlayışında, Hakikî varlık yalnızca Allah’tır, evren ve içindekiler ise O’nun varlığının bir tezahürüdür; mahlukatın kendiliklerinden bir varlıkları yoktur. Bu yaklaşıma göre, görünen âlem, Allah’ın isim ve sıfatlarının bir tecellisidir. Mevcudat, varlıklarını Allah’tan almış, birer tecelli simgesidir. Gerçek varlık sahibi yalnızca Allah olduğundan, mahlûkatın varlığı izafî ve gölgede kalan bir varlık mesafesindedir. Bu sebeple mutasavvıflar, "Lâ mevcûde illâ Hû" (O'ndan başka mevcut yoktur) ifadesini tasavvufta sıkça kullanırlar. Bu düşünceye göre Allah, evrende kendi varlığını farklı biçimlerde gösterir; buna “tecelli” veya “zuhur” denir. Doğadaki düzen, güzellik, denge ya da insanın içindeki sevgi, merhamet ve adalet gibi tüm düşünce ve duygular hep Allah’ın isim ve sıfatlarının yansımaları tecellileridir. Yani evrende neye bakarsak bakalım, aslında Allah’ın bir kudretine, bir ilmine tanıklık ederiz. Ancak bu, görünen şeylerin Allah’ın kendisi olduğu anlamına gelmez; onlar sadece O’ndan gelen tecelliler olduğundan aynadaki görüntünün yansıttığı nesneler gibidir. Diğer bütün varlıklar ise O’nun varlığının yansımaları, tecellileridir. Çokluk gibi görünen bu âlem aslında var olan birliğin farklı tezahürlerinden ibarettir. Her şey Allah'tan gelir ve sonunda O’na döner; varlıklar ancak O’nunla birlikte vardır. Nitekim Kuran-ı Kerimde: “...Biz şüphesiz Allah’a aidiz ve O’na döneceğiz..." (Bakara Suresi, 2/156) buyrulmuştur. Düşüncenin temeli bu ayetle ilişkilidir. 

Leonardo Pisano Fibonacci

Leonardo Pisano Fibonacci yaklaşık 1170 yılında İtalya’nın Pisa kentinde doğmuş bir matematikçidir. Avrupa’da Pisalı Leonardo ya da Leonardo Bonacci olarak da tanınır. Babası Guglielmo Bonacci adlı bir tüccardır. Küçük yaşlarda annesini kaybetmiş babası ile beraber ticari seyehatlere çıkmıştır. Fibonacci, küçük yaşta Kuzey Afrika’da bulunmuş ve burada Hint-Arap sayı sistemiyle tanışmıştır. Yaşamı boyunca Akdeniz çevresindeki birçok ticari merkeze gitmiş, farklı hesap yöntemleri öğrenmiştir. Ölüm tarihi kesin olmamakla birlikte yaklaşık 1240-1250 yılları arasında Pisa’da öldüğü tahmin edilir. 

Fibonacci’nin en ünlü eseri 1202 yılında yayımlanan Liber Abaci adlı kitaptır. Bu kitap, Avrupa’da Hint-Arap rakam sisteminin (0 ile 9 arası rakamların oluşturduğu sembolik sayı sistemi) yayılmasına büyük katkı sağlamıştır. Kitapta Roma rakamlarının yerine geçebilecek yeni sistem, ticaret, muhasebe ve para birimi dönüşümleri gibi konularda kullanılmıştır. Ayrıca bu kitapta yer alan teorik bir tavşan problemi ile bilinen "Fibonacci dizisi" tanıtılmıştır. Bu dizi genellikle 0 veya 1 ile başlar ve sonrasındaki her sayı, kendinden önce gelen iki sayının toplamı şeklinde devam eder.  ve şu şekilde devam eder: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Bu dizinin ardışık terimlerinin oranı giderek altın oran olarak bilinen yaklaşık bir sabite φ=1,61803.. değerine yaklaşır.

Liber Abaci, Leonardo'nun "dokuz Hint rakamı"nı tanıttığı bölümle başlar: 9, 8, 7, 6, 5, 4, 3, 2, 1. Bu rakamlar, günümüzde kullandığımız rakamlarla büyük benzerlik gösterir. Leonardo, bu rakamları kullanarak daha büyük sayıları temsil etmenin yollarını gösterir. Eserde ayrıca Roma rakamlarını Hint-Arap rakamlarına dönüştüren bir diyagram da bulunmaktadır. Makale, Leonardo'nun eserin başında yer alan otobiyografik bir metni de sunmaktadır. Bu metinde, babasının kamu görevlisi olarak görev yaptığı Bugia'da (günümüz Cezayir'inde) geçirdiği yıllarda Hint-Arap sayı sistemini öğrendiğini ve bu bilgiyi İtalya'ya taşıyarak halkına öğretmek için Liber Abaci'yi yazdığını belirtmektedir.

Fibonacci, ayrıca arazi ölçümleri, alan ve hacim hesapları, karelerle ilgili denklemler gibi konularda da çalışmalar yapmıştır. Sayılarla işlem yapılmasını kolaylaştıran Hint-Arap sisteminin Avrupa’ya tanıtılması sayesinde ticaret, muhasebe ve bilimsel hesaplamalar gelişmiştir. Fibonacci dizisi ve altın oran günümüzde matematik, doğa bilimleri, mimari ve sanat gibi pek çok alanda önemli yer tutmaktadır.

Kaynakça: 
Grimm, Richard E. The Autobiography of Leonardo Pisano. The Fibonacci Quarterly 11[1973](1):99-10.
Sigler, Laurence E. Fibonacci’s Liber Abaci. New York: Springer, 2002.

Richard Dunlap, Altın Oran ve Fibonacci Sayıları

Altın oran ve Fibonacci sayılarının, bitkilerin büyümesinin ve bazı katıların kristalografik yapısının incelenmesinden, veri tabanlarında arama yapmak için yazılan bilgisayar algoritmalarının geliştirilmesine kadar çok geniş bir uygulama alanı var. Bu sayılar hakkında bugüne değin çok şey yazılıp çizildi. Ancak elinizdeki kitap, bu konuda yazılan ciddi matematik metinler ile felsefi ve hatta mistik yaklaşımları ele alan kaynaklar arasındaki boşluğu dolduruyor.
Bu kitapta yazar, altın oran ve Fibonnacci sayılarının, sadece temel özellikleri üzerinde durmuyor, söz konusu sayıların matematik, bilgisayar bilimleri, fizik ve biyolojideki uygulama alanlarını da ele alıyor. Bu çalışmanın matematiğe, matematiğin fiziksel ve biyolojik bilimlerdeki uygulamalarına ilgi duyan okuyucuların ilgisini çekeceğini düşünüyoruz. Ayrıca genel matematik, geometri, sayılar kuramı konularında çalışan üniversite öğrencileri için de yararlı bir yardımcı okuma kitabı özelliğinde.

Richard A. Dunlap,TÜBİTAK YAYINLARI, Çeviren: Bekir Aktaş, Yayın Yılı: 2011,176 sayfa
| | Devamı... 0 yorum

Geometri ve Sanat ilişkisi

Geometri ve sanat, birbirleri ile bağlantılı olup birbirlerini destekleyen iki alandır. Sanatta geometrinin kullanımı, yüzyıllardan beri süregelmiştir. Sanat eserlerinin geometrik olması, onlara estetik değerler kazandırmaktadır. Sanatçılar yüzyıllar boyunca geometrik ögelerden ilham alarak bunları eserlerinde yansıtmışlardır. Resim, mimarlık, heykel ve cam süsleme (vitray) gibi pek çok alanda geometrinin etkisi görülür. G. Hardy “Bir matematikçinin savunması” kitabında şöyle tanımlar: “Bir matematikçinin yaptığı şey bir ressamın ya da şairinki kadar güzel olmalıdır. Düşünceler, renkler ve sözcükler gibi uyumlu bir biçimde birbirine uymalıdır. Dünyada çirkin bir matematik için kalıcı bir yer yoktur.” Bertrand Russell, insanın neden matematik öğrenmesi gerektiğini ciddi olarak incelemiş ve “Arzu edilen şeyin sadece yaşamak olgusu olmayıp, yüce şeyler üzerinde düşünerek yaşamak sanatı olduğunun hatırlanmasında yarar vardır.” demiştir. Russell “Matematik bir sanattır” düşüncesini daima savunmuştur. Galileo “Doğanın kitabı matematik diliyle yazılmıştır.” derken matematiği bilimin bir aracı olarak düşünmüştür. Burada, matematik ve geometri, sanatın nasıl görüldüğü ve anlaşıldığı konusunda derin bir anlamı ve değişikliği temsil eder. (Görsel: Arşimed Çarkları, Leonarda Da Vinci, 1490)

Toprağın çeşitli motiflerle süslenerek pişirilmesiyle elde edilen seramik ve çini sanatı, geometrik şekillerin en yoğun kullanıldığı alanlardandır. Çini ve benzeri kaplama ve motifleri; kervansaray, medrese, çeşme ve cami gibi yapıların yanı sıra tabak, vazo ve sürahi gibi gündelik eşyalarda da sıklıkla görürüz. Türk-İslam özellikle cami, medrese, kervansaray mimarisinde geometriksel model ve figürlerin sıkça kullanıldığını görmek mümkündür. İslâm mimarisinde hemen her coğrafyada uygulanmış geometrik desenler, halen günümüzde çeşitli mimari yapılardan dekorasyonlara kadar günlük yaşamımızın her alanında karşımıza çıkar. Pek çok dış kaplama ve süsleme alanlarında da geometrik desenler kullanılır.  Halı ve kilim dokumacılığında da motif ve desen işlemelerinde geometrik şekiller sıklıkla kullanılır. Japon geleneksel sanatlarından Kâğıt katlama sanatında geometrik desenler vardır. Origamide üçgenler, kareler ve dikdörtgenler en çok kullanılan geometrik şekiller sık kullanılır. Origami ile şapkadan çiçeğe, kuştan gemiye kadar pek çok şey yapılabilir. Mimari yapılarda da sıklıkla geometrik tasarımlar tercih edilir. Araç tasarımlarından, beyaz eşya, bilgisayar, elektronik, kamera, yedek parça ...vs gibi pek çok endüstriyel tasarımda da geometri tabanlı ürün modelleri fabrikasyon ortamlarında bilgisayar yazılımları sayesinde oluşturularak kullanılır. (Görsel: Geometrik Desenli Geleneksel Uşak halısı)
Geometri ve matematik öğeleri özellikle resimlerde karşımıza sıklıkla çıkar. Tarihin ilk zamanlarından itibaren Çin, Mısır, Hint, Avrupa ve İslam medeniyetlerine ait çizimlerde, geometrik unsurlar sıklıkla tercih edilmiştir. Örneğin, Rönesans döneminde ressamlar, perspektif kurallarını kullanarak geometrik şekilleri, resimlerine ustalıkla yansıtmışlardır. Da Vincinin "Vitruvius Man" tablosu, insan vücudunu çevreleyen geometrik oranları mükemmel bir şekilde göstererek, geometri ile sanatın buluştuğu harika bir örnektir. Ünlü ressam Leonardo da Vinci farklı tasarım ve çizimlerinde matematiksel  oranlardan yararlanıp, resimlerinde ve diğer eserlerinde sabit bir matematik oranı olan altın oranı kullanmıştır. Altın oran geometride her alanda kullanılan önemli bir orandır. Bu oran, Eski Mısırlılar ve Yunanlar tarafından keşfedilmiş, mimaride ve sanatta kullanılmıştır. Mısırlılar yaptıkları piramitlerde altın oranı kullanmışlardır. Mısırlıların yaptığı piramitler, aynı zamanda uzay geometrisinin kullanımına da örnektir. Leonardo da Vinci‘nin günlüklerinin birinde bulunan, insan ve doğayı birbiriyle ilişkilendirme ve bütünleştirme çalışması için bir dönüm noktası kabul edilen insan vücudundaki hatları ve oranları gösteren Vitruvius Adamı çalışmasında, Da Vinci, altın oranı çok net olarak açıklamıştır. (Görsel: Leonardo da Vinci’nin benzer bir çizimi, Vitruvius man, 1490)
 
Mimaride ve inşaat tasarımlarında geometri büyük bir öneme sahiptir. Bir binanın tasarımı sırasında geometrik şekillerin oranları, simetrisi ve denge unsurları dikkate alınarak estetik bir yapı ortaya çıkar. Günümüzde çağdaş mimarlar, geometriyi kullanarak çok çeşitli tasarımlara sahip inovatif ve etkileyici binalar inşa etmektedirler. Tabiattaki geometrik şekilleri fark eden insanlar geometriyi gündelik hayatlarında kullanmış ve üretim tasarımlarında sıklıkla uygulamışlardır. Zamanın değişmesiyle birlikte bir ihtiyaç haline gelen marka, reklam logo ve amblemlerin gündelik hayatta ortaya çıkması, insanların bu tasarımlarda da geometriye yönelmelerini sağlamıştır. Bunun sonucunda da dikkatimizi çekmeyen en basit bir marka, logo veya bir amblem dahi geometrik tasarımlı bir ürün haline gelmiştir. Perspektif çizimleri ve fraktal geometri alanlarında da geometrik unsurlar göze çarpar. Mimaride geometri, binaların ve yapıların tasarımında matematiksel şekil ve formların kullanılmasını, matematik yasalarının somut formlara dönüştürülmesini ifade eder. Estetik, fonksiyonel ve yapısal olarak sağlam tasarımlar oluşturmak için geometrik ilkelerin düzgün hesaplamalarla uygulanması mimarlıkta temeldir. Çemberler, kareler, üçgenler ve poligonlar ve polihedra gibi daha karmaşık formlar gibi temel geometrik şekiller, mimari projelerde sıklıkla tercih edilir. (Görsel: Tac Mahal, Hindistan, 1654)
Mimari tasarımda denge ve uyumu sağlamak için simetri ve belirli oranların ustalıkla kullanılması esastır.Mekansal Organizasyon oluşturmak, fonksiyonel ve hoş iç ve dış mekanlar meydana getirmek için iç ve dış mimaride geometrik formlar uyumlu biçimde düzenlenir.Yapılan binaların güçlü ve istikrarlı olmasını sağlamak için geometrik ilkelerin dikkatle kullanılır. Geometri, mimari tasarımların görsel çekiciliğine ve benzersizliğine estetik olarak katkıda bulunur. Özel geometrik desenler ve tasarımlar yoluyla, geçmişten günümüze kültürlerarası bağ kurarak kültürel ve tarihi önem gelecek nesillere aktarılır. Enerji verimliliğini ve sürdürülebilirliği artıran geometrik tasarımların uygulanarak, mimari projelerin daha sağlıklı olması amaçlanır. Bilgisayar destekli tasarım gibi modern teknolojiyle gelişmiş geometrik tekniklerin dahil edilmesiyle yenilikçi tasarımlar oluşturulur. Kısacası, bir mimar; geometrik kavramları tam manasıyla kavramadıkça işlerini iyi bir şekilde yapamaz. (Görsel: Faysal Cami, Pakistan,1986)
 
Geometrik şekillerin sanatta yaygın bir şekilde kullanılması; izleyicilerde estetik duygusu, haz, zevk, gibi duygusal etkiler oluşturur ve sembolizm alanın gelişmesine yardım eder. Sanatsal yapılarda kullanılan üçgen, kare, daire, dikdörtgen, küp, koni, küre gibi geometrik şekillerle düzleme bir düzen getirerek bakış açısında görsel bir bütünlük oluşturur. Simetri ve estetik, geometrik şekillerin kullanımıyla birleşerek, sanat eserine dengeli bir görünüm kazandırır. Matematiksel oranlar, hesaplamalar ve prensipler, sanat eserlerinin oluşmasında estetik değerini daha fazla artırır. Bu nedenle geometri ve matematik prensiplerinin kübizm gibi farklı alanlarda çıkan ürün tasarımlarında kullanımı, estetik ve sanat açısından önemli bir yere sahip olmaya devam edecektir. Geometri ve sanat arasındaki ilişki oldukça derin ve uzun bir geçmişe dayanmaktadır. Mimarlar, sanatçılar, tasarımcılar binlerce yıldır geometrileri ve matematik yasalarını kullanarak eserlerini oluşturmuşlardır. (Görsel Aziziye Cami, Konya, 1867)
 
Geometri prensiplerinin kullanımlarının yer aldığı, geometrinin sanatla ilişkisini açıklayan bazı örnekleri başlıklar halinde şöyle sıralayabiliriz:
***Geometrik şekillerin en çok kullanıldığı sanat akımı, kübizmdir. Kübizmde sanatçılar tek karede nesnelerin birçok farklı açıdan görünüşünü yansıtırlar. Kübizm, yalnızca nesnelerin yüzeyde görünme biçimine değil, aynı zamanda sanatın kavramsal yönüne de meydan okur. Sanatın göreceli ve öznel bir deneyim olduğuna işaret ederek sanatın yorumuna izleyici katılımını teşvik eder. Kübist sanatçılar, nesnelerin şekillerini tasvir etmek için küp, küre ve koni gibi basit üç boyutlu geometrik şekilleri kullanmayı tercih ederek izleyiciye farklı bir bakış açısı kazandırmayı hedeflerler. Kübizm, 20. yüzyıl başındaki temsile dayalı sanat anlayışından saparak devrim yapan Fransız sanat akımıdır. Pablo Picasso ve Georges Braque, nesne yüzeylerinin ardına bakarak konuyu aynı anda değişik açılardan sunabilecek geometrik şekilleri vurgulamışlardır. Kübizm, eşyanın uzaklık ve yer içinde kapladığı hacim kanununu temel hareket noktası olarak alır. Bu akıma mensup sanatçılar, resimde özün, değişmeyenin peşinde koştuklarını savunurlar. Onlara göre, eserlerde konunun sadece görünen yönünü değil, görünmeyen taraflarını da göstermek gerekir. (Görsel:L'Estaque'deki Evler, Georges Braque, 1908)
 
***Mozaik ve Desenler: Mozaik, küçük taş, çanak çömlek, cam, fayans veya kağıt parçalarını bir araya getirerek oluşturulan bir desen veya resimdir. Mozaik beş bin yıl önce ilk kez Sümerler tarafından denenmiş bir resim sanatıdır. Mozaik sanatının o dönemlerden günümüze kadar gelen iki çeşidi bulunmaktadır. Biri beton üzerine mozaik parçaların yapıştırılması, diğeri ise tutkalla bulunan zemine küçük parçaların yapıştırılmasıdır. Örneğin, antik Romalılar tarafından yapılan mozaikler popüler sanat eserleri olarak, çeşitli kamusal ve özel binaların zeminlerinde veya duvarlarında kullanılmıştır. Antik Afrika ve Roma mozaikleri, Pompei mozaiği, Zeugma mozaiği, Ayasofya Camii Mozaikleri, Sicilya'daki Villa Romana del Casale, Ürdün Madaba Haritası, İtalya’daki Apolinare Nuovo Bazilikası, Arcivescovile Şapeli ve San Vitale Bazilikası gibi ünlü Ravenna Bazilikaları, Adana Misis antik şehir mozaikleri, Tunus Bardo Müzesi, Villa Harvey Mandel (ABD) ve İspanya’daki Park Güeli... dünya genelinde farklı dönemlere ve kültürlere ait bazı ünlü mozaik örnekleri olarak karşımıza çıkar. Mozaik sanatı, geometrik desenlerin en güzel örneklerinden biridir. Mozaikler, tekrarlanan desenleri ve simetrileri kullanarak göz alıcı ve karmaşık eserler oluştururlar. Mozaik desenler, sanat eserlerinde ritim ve denge hissi oluşturmada önemli rol oynar. Mozaik sanatı eserleri, genel olarak incelendiğinde kullanılan küçük taşların özel bir tekniğe göre dizilmesi ile bir ahenk oluşturduğu görülür. Günümüzde mozaik sanatı seramik ve fayanslar üzerinde yansıtılması devam etmektedir. (Görsel: Zeugma Müzesi, Gaziantep, 2011)
***Perspektif ve bakış açısı: Perspektif, nesnelerin görünümünü üç boyutlu olarak düz bir yüzeyde, yani iki boyuta indirgeyerek, göstermeye yarayan bir izdüşümdür. Perspektif, teknik bir çizimdir. Nesnenin gözlemciye göre olan pozisyonunun ve uzaklığının etkileri esas alınarak perspektif çizimi yapılır. Söz konusu çizimler gözlemcide, biçim ve orantı bakımından, renklerden bağımsız olarak, üç boyutlu bir gerçeklik izlenimi oluşturmalıdır. Perspektifte iki boyutlu herhangi bir yüzeye, üç boyutlu bir cismin resmini çizmek için çeşitli metot ve teknikler kullanılır. Cisimler uzaklaştıkça görünüşleri gerçek görünüşlerinden farklılaşarak ufalır. Bu farklılaşma perspektif prensipleriyle tarif edilir. Cismin görüntüsü optik ve matematik olarak ifade edilebilir. Perspektif, mimarlar, mühendisler, endüstri planlayıcıları tarafından çizimlerde çok fazla kullanılır. Geçmişte özellikle Rönesans döneminde ressamlar, perspektif kurallarını kullanarak üç boyutlu derinlik hissi veren tablolar çizmişlerdir. Perspektif, geometrik prensipleri kullanarak bir sahnenin uzaklığını ve derinliğini doğru bir şekilde yansıtmaya yardımcı olur, izleyiciyi farklı estetik duygular içinde hissettirir. (Ayrıntılı bilgi için Bkz.Perspektif Çizimi)
***Fibonacci Dizisi: Her sayının önceki iki sayının toplamı olduğu bir sayı dizisi olan Fibonacci dizisi (0, 1, 1, 2, 3, 5, 8, vb.), doğada ve sanatta farklı yapılarda görülür. Fibonacci sayıları, MÖ 200 kadar erken bir tarihte biliniyordu ve Hint matematiğinde eski bir Hint şairi ve matematikçisi olan Acharya Pingala tarafından kullanılmıştır. Sanatçılar, Fibonacci spirallerini ve desenlerini eserlerine entegre ederek, deniz kabukları, çiçekler ve diğer organik formlarda bulunan doğal düzeni yansıtan göze hoş gelen ve uyumlu tasarımlar oluştururlar. (Ayrıntılı bilgi için Bkz. Fi Sayısı kullanıldığı yerler) 
Fibonacci dizilerinin bir sonucu olarak altın oran çizimleri tasarımlarda kullanılır. Altın oran, matematik, fizik, resim, mimari, müzik ve daha birçok disiplinde kullanılarak tüm zamanların en yaygın kullanılan ve önemli matematiksel kavramlarından biri haline geldi. Altın oranın görsel çekiciliğin ötesinde daha da fazla faydası vardır, çünkü mimaride kullanıldığında aslında bir yapının istikrarında rol oynar. (Görsel: Salvador Dali'nin Son Akşam Yemeği Sakramenti, 1955)

Fibonacci dizisinin görsel olarak en büyüleyici tezahürlerinden biri, geometride altın spiral olarak da bilinen Fibonacci spiralidir. Bu spiral, kenar uzunlukları Fibonacci sayılarına karşılık gelen karelerin içine yaylar çizerek oluşturulur. Fibonacci spiralleri; nautilus kabuklarında, kasırgalarda ve hatta galaksilerde gözlemlenebilen zarifçe genişleyen bir spiraldir. Klasik sanatta, bu spiralin oranları genellikle bir kompozisyon içindeki öğelerin yerleşimini yönlendirmek için kullanılır ve izleyicinin bakışını estetik açıdan hoş bir yola yönlendirir. Leonardo Da Vinci, Michelangelo (Sistine Şapeli), Salvador Dali'nin Son Akşam Yemeği Sakramenti, Georges Seurat'nın La Grande Jette'de Bir Pazar adlı tablosu, Partenon (Antik Yunan Mimarisi), Giza'daki Antik Mısır Mimarisi Büyük Piramit, Vatikan'ın sarmal merdivenleri gibi tasarım ve yapılarda Fibonacci spirallerini ve altın oranı görmek mümkündür. (Görsel: Mısır Büyük Keops Piramidi, MÖ.2500?, Firavun Anıt Mezarı)

***Altın Oran: matematiksel bir orandır (Altın oran irrasyonel bir sayı olup yaklaşık değeri olarak 1.618... sayısı kabul edilir). Bu oran, sanatta denge ve estetik açısından hoş tasarımlar, derinliğe sahip görsel dengeli çizimler sağlamak için sıklıkla kullanılmıştır. Altın oranın tam olarak ilk ne zaman kullanıldığına dair kesin bir bilgi yoktur. Matematik ve fizik çalışmalarında tarihin ilk dönemlerinden beri kullanıldığı gözlemlenmiştir. Euclid (M.Ö. 365 – M.Ö. 300), "Elementler" adlı kitabında, bir doğruyu 1.6180339... noktasından bölmekten bahsetmiş ve bunu, "bir doğruyu ekstrem ve önemli oranda bölmek" diye adlandırmıştır. Antik Yunan ve Mısır mimarlığında, Rönesans resimlerinde ve çağdaş tasarımlarda altın oran sıkça karşımıza çıkar. (Ayrıntılı bilgi için Bkz. Altın Oran)
Altın oran, günlük yaşantımızda, matematiğin estetik güzelliğe etki ettiği her alanda karşımıza çıkan bir kavramdır. Altın oran; bir sayının insanlık, bilim ve sanat tarihinde oynadığı inanılmaz bir roldür. Fi sayısı, evren ve yaşamı anlama konusunda bizlere yeni kapılar açmaya devam etmektedir. 1970'lerde Roger Penrose, o güne kadar imkânsız olduğu düşünülen, "yüzeylerin beşli simetri ile katlanmasını" altın oran sayesinde bulmuştur. 2014 yılında yayınlanan "İstatistikte altın oran" adlı bir kitapta, simetrik olmayan (Çarpık) dağılımları parametrik denkleme dönüştürmek için, altın oran tabanlı yeni bir ortalama ve sapma metodu tanımlanmıştır. (Görsel: Leonarda Da Vinci, Mona Lisa Tablosu, 1507)
***Fraktallar: Günümüze yakın tarihlerde kullanımı artan fraktal geometrisi, genellikle "Benoit Mandelbrot" adıyla birlikte anılır. Geometrinin en ilginç alanlarından biri olan fraktallar, tekrarlanan desenlerle oluşturulan karmaşık yapıları içerir. Fraktallar, farklı ölçeklerde kendi kendine benzer olan sonsuz derecede karmaşık desenleri meydana getirir. Basit bir işlemin sürekli bir geri bildirim döngüsünde tekrar tekrar tekrarlanmasıyla yeni desen ve tasarımlar oluşturulur. Özyinelemeyle yönlendirilen fraktallar, dinamik sistemlerin görüntüleri olarak kaosun ve heyecanın resimleri olarak tanımlanır. Sanatçılar, fraktalları kullanarak doğadan ilham alan çok katmanlı ve detaylı eserler oluştururlar. (Görsel: Federation Square, Lab Architecture Studio, Melbourne, 2002)
Fraktallar, çok farklı alanlarda karşımıza çıkan ilginç tasarımlar olup, bir brokoli deseninden, bakterilerin büyüme şekli, kar tanesi ve beyin dalgalarındaki desenlere kadar pek çok alana yayılım gösterir. Kablosuz cep telefonu antenleri, sinyalleri daha iyi almak ve basit bir antenden ziyade daha geniş bir sinyal yelpazesini almak için fraktal bir tasarım deseni kullanır. Ritim veya desenli herhangi bir şey, fraktal olma şansına sahiptir. Fraktal geometri, önemli bilimsel kavramları incelememize ve anlamamıza yardımcı olur.
Fraktal geometride kullanılan formüller, birçok bilimsel gelişmeyi incelemeyi mümkün kılar. Fraktal araştırmaları, bilim, endüstrisi ve sanat tasarımı gibi birçok alanda bir devrime yol açmıştır. Örneğin, bir zamanlar ölçülemez olduğu düşünülen bulutların ve kıyı şeritlerinin ana hatları, artık titizlikle niceliksel bir şekilde fraktal yardımıyla ele alınabilir hale gelmiştir. Fraktal geometrisi; gezegenlerin, yıldızların ve galaksilerin kümelenmesi, beyin sinir hücrelerinin dizilimi, deprem bölgesinde kayaçların parçalanması, bulutların yer değiştirmesi... gibi çeşitli alanlardaki izahı zor meseleleri açıklamada yardımcı olmuştur. (Görsel: Fraktal geometri tasarımı)
***Geometrik Şekiller ve Soyut Sanat: Geometrik şekiller, soyut sanatın temelini oluşturur. Sanatçılar, geometrik şekilleri abstraksiyon yoluyla kullanarak duyguları ve düşünceleri ifade ederler. Abstraksiyon, karmaşık bir konuyu veya kavramı daha genel ve soyut bir şekilde temsil etme veya betimleme sürecidir. Bu sayede detaylara inmeden genel bir bakış açısıyla bir konuyu anlamamızı sağlar. Abstraksiyon (soyutlaştırma), sanatsal bir nesnenin özünü anlamaya yönelik genelleştirme veya soyutlama sürecidir. Bu süreçte detaylardan ve belirsizliklerden arınarak konunun ana hatları, temel unsurları daha genel bir düzeyde ele alınarak net bir bakış açısı sunar. Kazimir Malevich, Piet Mondrian gibi sanatçılar, geometrik şekillerin ve renklerin kombinasyonunu kullanarak soyut eserler ortaya koymuşlardır. Piet Mondrian, soyut sanatın öncülerinden biridir. Eserleri genellikle geometrik şekiller, dikdörtfen formlar, düz çizgiler ve temel renklerin kullanımıyla karakterizedir. P. Mondrian'ın eserleri, soyut düşünceyi ve evrensel dengeyi yansıtan basit ve minimalist bir tarza sahiptir. Ünlü eserlerindeki düzlemler ve renk blokları, sanatçının arayışını ve evrensel dengeyi ve düzeni ifade etme çabasını yansıtır. (Görsel: Broadway Boogie Woogie, Piet Mondrian, 1942)
***Kutsal ve ideolojik Geometri: Sanatçılar ve mimarlar tarihsel süreçte, sembolik ve ruhsal anlamlar taşıdığına inanılan geometrik formlara ve oranlara ilham veren kutsal geometri kavramlarından etkilenmişlerdir. Yaratıcının evreni geometrik bir plana göre yarattığı inancının, tarihte çeşitli milletlerde antik kökenleri vardır. Platon "Tanrı'nın sürekli olarak geometri yaptığını" söylemiştir. (Convivialium disputationum, Liber 8;2) Kutsal geometri çalışmasının kökleri doğa çalışmasında ve bu çalışmada kullanılan matematiksel ilkelerde yatar. Doğada gözlemlenen pek çok form geometriyle ilişkilendirilebilir; örneğin, odacıklı salyangoz (nautilus) sabit bir oranda büyür ve bu nedenle kabuğu, şeklini değiştirmeden bu büyümeye uyum sağlamak için logaritmik bir spiral oluşturacak şekilde bir yapı meydana getirir. Bal arıları, ilahi bir ilham neticesince peteklerini balları daha iyi tutabilmek için altıgen hücreler biçiminde inşa eder. Buna benzer diğer doğadaki tasarımlar ilahi bir gücün geometrik sanatının gösterir. Mısırlılar ve Yunanlılar gibi eski medeniyetler, kutsal geometrik prensipleri, derin anlamları ve evrensel bağlantıları ifade etmek için sanatları ve mimarilerine entegre etmişlerdir. (Görsel: ABD Merkez Bankası, 1 Dolar Arka Yüzü)
Dini öğe ve tasarımlarda, tapınaklarda, icona ve figürlerde geometri kullanılmıştır. Masonik sembol ve işaretlemelerde, Tapınak şövalyeleri gibi gizli örgütlenmelerde, geometrik detaylar önemli bir yere sahiptir. Hıristiyan dünyasında Hz. İsa ve Meryem çizim ve ikonalarında, kilise tasarımlarında geometrik unsurlar yer alır. Budist dini geleneklerde kişiyi bir objeye odaklayarak kurtuluşa ulaştırmayı hedeflemeyi amaçlayan "mandala" bir geometrik tasarımdır ve bu tasarımda, merkezden eşit uzaklıkta eşit aralıklarla yerleştirilen eş merkezli daire ve kare şeklindeki geometrik desenler iç içe yerleştirilerek çizilir. Mandala, kozmik evrenin, merkezi bir noktaya giden dairesel bir desendeki temsili şeklinde olup Budizm dini inanışı açısından başlangıç ve sonun bir sembolü veya bütünlüğü anlamına gelir. Çin halk dininde insan ve doğa ilişkileri tasarımlarında, feng shui prensiplerine sadık kalınarak geometrik tasarımlar kullanılır. Hindu tapınakları, kozmik modelin sembolik temsili olarak fraktallara benzer şekilde geometrik formlarda inşa edilir. Hint tapınaklarında veya evlerde putlara tapınmak veya meditasyonda yardımcı olması amacıyla kullanılan "yantra" isimli tasvirlerde, geometrik desenler eski zamanlardan beri kullanılır. (Görsel: Chenrezig Kum Mandalası, İngiltere, 2008)
***İlizyon desenlerle Kaplama (Tessellation): Desenlerle kaplama, arasında hiç boşluk kalmadan bir araya gelen tekrarlanan geometrik desenleri ifade eder. Özellikle Maurits Cornelis Escher, Oleg Shupliak, Robert Gonsalves, Jos de Mey, Tomek Sętowski, Julian Beever, Michael Parkes, Vladimir Kush, Giuseppe Arcimboldo, Eva Almqvist, David Novick, Kohske Takahashi gibi sanatçılar, desenlerle kaplamaları kullanarak, hipnotize edici illüzyonlar oluşturmuşlar ve çizimler yoluyla karmaşık geometrik düzenlemeler meydana getirerek, sonsuzluk hissine ulaşmayı amaçlamışlardır. Bu alanın öncülerinden sayılan M.C. Escher (1898–1972) Hollandalı bir grafik sanatçıdır. Escher’in matematik ile ilgili herhangi bir ihtisası yoktur. Ancak çalışmalarında matematiksel kavramları doğru bir şekilde resmetmiştir. (Görsel: Maurits Cornelis Escher, Devolopment, 1937; Reptiles, 1943)
Escher’in çalışmaları matematik dünyası ve hayal dünyasının arakesitinde yeni keşiflere doğru bir davetiye niteliği taşımaktadır. Escher’in çalışmaları matematik dünyası ve hayal dünyasının arakesitinde yeni keşiflere doğru bir davetiye niteliği taşımaktadır. “Escher matematiği, sanatçıya varlığı tanımanın, anlamanın ve anlatmanın yolunu gösteren ışık olarak nitelemektedir. Ona göre matematik, evrenin tüm bilgilerini, gizemlerini, örüntülerini içinde barındıran bir bilimdir.” Escher matematik terim ve kavramlarına yer verdiği çizimlerinde, paradoks, yanılsama ya da çifte anlamın yanı sıra "Garip Döngüler" kavramının da en iyi uygulayıcısıdır. "Garip Döngüler" kavramı, örtük olarak sonu olmayan bir sürecin sonlu bir biçimde temsili olarak açıklanabilir. Bu durum Escher’in çizimlerinin çoğundaki sonsuzluk hissini veren aslında iç içe geçen tek bir temanın kopyalanarak tekrarlanmasıdır. (Görsel: Maurits Cornelis Escher, Kaskata, 1961)

Escher’in çizimlerinde zaman, mekân, paradoks, yanılsama, simetri, çifte anlam, perspektif gibi birçok unsur ve kavramın bir arada ya da belli birkaç unsurla kullanıldığı görülmektedir. Escher’in tasarımlarında, görsel imajları gözle görülür ve anlaşılabilir hale getirme işlevi olan "grafik düşünme" konusundaki başarısı rahatlıkla görülebilir. Tasarladığı çizimler, görsel imajlar, mekânsal kurgular, planlar ve figür-zemin ilişkileriyle görsel algılamanın önemli örneklerini ortaya koymuştur. “Yapıtlarında, göz yanıltıcı perspektifle mekânsal yapıya şaşırtıcı bir üç boyutluluk kazandırarak muhatablara aktarmayı başarmıştır. Fiziksel nesneler arasındaki uzaysal ilişkiyi bilerek bozduğu çizimleri, içbükey ve dışbükey nesneler üzerindeki ışık ve gölgelerle oynayarak bazen optik yanılsamalar meydana getirmiş ve böyle çizimleri kendi adıyla anılan  Esher paradokslarına neden olmuştur. Escher kendisine has kurgusuyla tasarımladığı çizimlerinde mekânın yanı sıra zaman kavramını da sorgulatmıştı. Bir noktadan bir noktaya yürüyen ya da yuvarlanan figürlerin ilk ve son halinin görülebildiği bu çizimlerde bu özelliği sebebiyle zamansallığı da algılamak mümkündür. Escher’in eserlerinde yer verdiği renk simetrisi, düzlemi kopyalarıyla dolduran figürlerin sarmal dizilişi ve doğayı geometri ile örneklendirmesi, zamansal ve mekansal gerçekliğin sorgulanması gibi öğelerin başarılı bir şekilde kullanımı, kendisinden sonra gelen birçok çalışmaya ilham kaynağı olmuş ve çeşitli sanatçılar tarafından bu alanda katkıların sunulmasına zemin hazırlamıştır. (Görsel: Maurits Cornelis Escher, House of Stairs, 1951; Belvedere 1958)
 ***Çini desen ve kaplamaları İslam dünyasında sıklıkla kullanılmıştır. Çini sanatında kullanılan çiniler; kil, kum, tebeşir gibi doğada rahatlıkla bulunabilen malzemelerden oluşturulan hamurdan elde edilen kaplama şekilleri (seramik ve fayans) yüksek sıcaklıktaki fırınlarda 24 saat boyunca pişirilmesiyle meydana getirilir. Çini kaplama, uzun zaman isteyen zorlu bir sanattır. Çini hamuru hazırlama, zımparalama, astarlama, hamurun ilk fırınlama işlemi, çini desen çizimi ve delme, kömürleme, tahrirleme ve boyama, cilalamq ve sırlama, son fırınlama aşamalarından oluşan kapsamlı bir iştir. Sabır gerektirir. Kullanılan tekniğe de bağlı olarak boyama işleminden sonra veya önce sırça denen özel bir karışımla çini kaplama yapılarak desen ve motif çizimleri tamamlanır. Bu şekilde zorlu bir süreçten geçen Çini sanatı, Selçuklu ve Osmanlı mimarisinde sıklıkla kullanılmıştır. İznik çinileri, Kütahya çinileri cami, medrese ve kervansaray gibi çeşitli alanlarda ortaya çıkan geleneksel Türk seramik sanatı eserlerinde; üçgen, dikdörtgen, kare gibi çokgenlerle oluşturulmuş geometrik desenler, lale, gül, yaprak, dal gibi bitkisel motifler ve çeşitli hayvan figürleri gözlenir. (Görsel: Kütahya Çini Sanatı)
***Konstrüktivizm: Rusya'da 20. yüzyılın başlarında doğan konstrüktivizm sanat akımı, geometrik formlardan ve prensiplerden etkilenmiştir. Konstrüktivizm, bilginin doğrudan dış gerçeklikten değil, bireyin zihinsel yapılarından ve deneyimlerinden kaynaklandığını savunan bir felsefe ve öğreti akımıdır. Bu akıma göre, bireyin düşünceleri, inançları ve bilgileri kendi deneyimleriyle oluşturduğu yapılardır. Konstrüktivist yaklaşım, öğrenmeyi pasif bir şekilde bilgiyi almak yerine aktif bir süreç olarak gören ve öğrenci merkezli bir perspektife sahip olan bir yaklaşımdır. Konstrüktivizmde öğrencilerin, sanat meraklılarının, izleyicilerin kısacası bu sanatın muhatabı durumundaki kişilerin öğrenme sürecinde aktif rol almaları teşvik edilir ve tasarımlarda, bilgilerde, resimlerde, heykellerde olağan görünüşten ziyade muhatabın kendi anlamalarını oluşturmalarına firsat verilir. (Görsel: Vilademir Tatlin, Üçüncü Enternasyonal Anıtı projesi, 1920)
 
Konstrüktivizm, bilginin aktarımından ziyade öğrencilerin kendi bilgi yapılarını inşa etmelerini öne çıkarır ve öğrenmenin sosyal ve etkileşimli bir süreç olduğunu vurgular. Bu yaklaşım, muhatabların öğrenmeye ilişkin kendi deneyimlerini ve gerçek yaşamları ile ilişkilendirmelerini teşvik eder. Konstrüktivizme ilişkilendirilen sanatçılar, toplumsal veya siyasi bir amaca hizmet eden sanat eserleri oluşturmayı amaçlamışlar ve genellikle geometrik şekilleri kullanarak sadelik ve düzen barındıran estetiği ifade etmişlerdir. Konstrüktivizm sanat akımı, soyut ve geometrik formların kullanımını vurgulayarak sanat eserlerinde düzen, düzlem, denge ve geometrik yapıların ön planda olmasını savunur. Ayrıca sanat eserlerinde işlevsellik, düzen, netlik, estetiksel açıdan göze hitap eden açık renk kullanımı, farklı renklerin bir arada uyumu, endüstriyel malzeme kullanımı ve sanatın toplum üzerinde etkili olması gibi ögeler, Konstrüktivizmin temel prensipleri arasında yer alır. (Görsel: Liubov Popova, Spatial Force Construction, 1920)
***Topolojiyi anlamak, verimli, çok yönlü ve görsel olarak çarpıcı modeller oluşturmayı amaçlayan herhangi bir sanatçı için temel bir anlayıştır. Topoloji, bir 3D modelleme için geometrik yüzey özelliklerini ifade eder ve çokgenlerin kendi aralarında nasıl düzenlendiğini ve birbirine bağlı olduğunu anlamlandırmaya yardımcı olur. Topoloji; geometrik şekillerin biçimleri ve boyutlarından çok birbirleriyle ilişkileri, bükme, germe gibi şekil deformasyonlarından sonra da taşıdığı değişmez özellikleriyle ilgilenen bir matematik dalıdır. Söz gelimi, kare biçiminde kesilen bir yüzey yırtmadan, delmeden ve yapıştırmadan büküldüğü, esnetilip uzatıldığı, ortası şişirildiğinde bile, topolojik anlamda değişmez olan özelliklerini korumaktadır. Oyun tasarımı, karakter tasarımı, mimari görselleştirme veya oyun grafikleri gibi alanlarda topoloji yasalarının bilinmesi, oluşturulan tasarım ve modellemelerin işlevsel ve kullanışlı olmasını sağlarken estetik açıdan da hoş görünmesine etken olur. Topoloji tasarımı, modelleme amacıyla matematiksel denklemlere çevrilebilen düğüm ve akışlardan oluşan bir sistemin, grafiksel bir temsilini oluşturma sürecini ifade eder. Bu yaklaşımla, modellerin verimli ve özelleştirilebilir gelişimi sağlanır ve tasarım aşamalarında oluşabilecek potansiyel hatalar en aza indirgenir. Böylece daha sağlam ve görsellik açısından etkileyici ve istikrarlı dinamik tasvirler elde edilir. Klein şişesi de böyle bir topolojik tasarım yaklaşımının sonucudur. Bir Klein şişesi, topolojik konseptin daha karmaşık görünümlü bir versiyonudur, çünkü şişenin tasarımında boynu kendi içinde, dışarısında, sadece bir sürekli yüzeyin olmadığı şekilde kendi içinde kaybolur. Gerçek bir Klein şişesinin en az dört boyuta ihtiyacı vardır; başka bir deyişle, böyle bir şişe camdan üflenerek somut bir şekilde yapılamaz. İnsanların sadece üç boyutta gördüğü gibi, dördüncü boyut da üç boyutlu bir temsilden çıkarılarak soyut düşünülmelidir. (Görsel: Felix Klein Şişesi, 1882)
 
***Klein şişesi; geometrik açıdan çok ilginç şekillerden biridir. İçi ya da dışı yoktur, hacmi sıfırdır. Klein şişesinin üç boyutlu bir şekli bulunamaz. bir çember şeklinde tekillik içeren üç boyutlu modelleri yapılabilmektedir. Tek bir sınır eğrisinin bulunduğu iki Möbius şeridinin kenarları boyunca birleştirilmesi ile yapılabilir. Klein şişesi, fantastik bir biblo olmanın ötesinde ciddi bir matematiksel değer taşıyan “topolojik” bir nesnedir. Klein şişesi, kendi kendini kesmeyen topolojik bir şekildir. Klein şişesinin dört boyutta yer aldığını görselleştirmenin bir yolu vardır. Üç boyutlu uzaya dördüncü bir boyut ekleyerek, kendi kendini kesme işlevi ortadan kaldırılabilir. Klein yüzeyi, Riemann yüzeylerinde olduğu gibi, atlas ve haritalarının karmaşık sayı eşlenikleri kullanılarak oluşturulmasına zemin hazırlar. (Bkz. Klein Şişesi)
 
Eski çağlardan beri, insanlar nokta, çizgi, düzlem ve cisim özelliklerini öğreten yasaları araştırdılar ve  bunları gündelik hayatlarında uyguladılar. Eski antik medeniyetlerden günümüze her medeniyet bunu bir şekilde yaşantılarında kullanmıştır. Eğer ilk Yaratıcı, çemberin merkezindeki nokta ile sembolize edilebilirse, merkezin çevresindeki sayısız nokta, merkezle yansıma olarak ve bu sayısız ilişkiler içinde olan tüm varlıkları sembolize eder. Tüm evren parçaları bir nevi yarıçapla doğrudan merkeze bağlı bir daire olarak görselleştirilebilir. Geometride, kendini bu şekilde gösteren alemlerde olduğu gibi, temelde "bir" ve "sonsuz çeşitlilik" yasaları vardır. Doğanın güzelliği, düz çizgi ve eğri, kristal ve biyomorfik arasındaki uyumlu etkileşimden yaratıcının sonsuz kudretini simgeler. Doğanın mutlak güzellik örnekleri, böylece sanatçılara ilham kaynağı olur. Örneklerde görüldüğü gibi Geometri, sanat alanında yapı ve düzen sağlamanın yanı sıra sanatçılara karmaşık kavramları keşfetme, duyguları ifade etmede önemli bir role sahiptir. Tasarımlarda dünyayı temsil etme duygusunu aşarak; şekillerin, desenlerin ve oranların evrensel dilinden yararlanma imkanını insanlara sunar. Doğadaki uyuma benzer pek çok örnek, geometrinin sanatla olan derin ve karmaşık ilişkisini göstermesi açısından etkileyici olur. Geometri, sanatçılara eserlerinde denge, ritim, estetik ve derinlik kazandırmak için önemli bir araç sağlar. Geometri böylece sanat eserlerinin ardındaki matematiksel düzeni ortaya çıkarmak için bir aracı konumda olur. Bu şekildeki bir geometrik sanat anlayışı geçmişte ve günümüzde sıklıkla kullanılmış ve halen kullanılmaya devam etmektedir.
Kadir PANCAR
09/12/2012

Matematik Öğretiminde Müzik

"Müzik ile bilişsel aktivitelerin gelişimi konusunda yıllardır çeşitli araştırmalar yapılmıştır. Ancak medya tarafından ençok ilgi gören araştırma 1993'te "Mozart Etkisi" (Mozart Effect) olarak duyurulmuş ve çok dikkat çekmiştir. Araştırma Frances Rauscher tarafından yürütülmüştür. Amerika'da Psikoloji bölümünde okuyan 38 öğrenciye 10 dakika süre ile Mozart'ın iki piyano için yazdığı Re Maj. Piyano Sonatı (K.V.448) dinlettirilmiştir. Daha sonra öğrencilere üç boyutlu düşünme testi uygulanmıştır. Sonuçta, kontrol grubuna kıyasla Mozart dinleyen gruptan 8-9 puan daha yüksek sonuçlar elde edilmiştir. Müzik ile üç boyutlu düşünme arasındaki ilişki o dönemde ortaya atılmıştır. Sonuçlar açıklandıktan sonra araştırmacılardan birisi olan teorik fizikçi Gordon Shaw Mozart müziğinin beyne jimnastik yaptırdığını öne sürmüştür ve şöyle demiştir : " Karmaşık yapılı müziğin matematik ve satranç gibi ileri düzey beyin etkinlikleri ile ilgisi olan belli karmaşık sinirsel örgütler arasındaki iletişimi kolaylaştırdığına inanıyoruz. Bunun aksine basit ve tekrara dayanan müziğin karşıt bir etki yapabileceğini düşünüyoruz. " (Campbell,2002: 25-26).
Yapılan çeşitli Mozart Etkisi çalışmalarının yanında fareler üzerine yapılan bir çalışma ilginçtir. Farelere uzun süre Mozart müziği dinlettirilmiş ve labirent çözmede daha başarılı oldukları gözlemlenmiştir. Farelerin öğrenme düzeylerindeki artış müzik kesildikten 4 saat sonrasına kadar etkili olmuştur. (Shaw 2000.:36)
1996 yılında Avustralya'da yapılan bir çalışmada okul öncesi dönemi çocuklara 10 ay boyunca haftada 1 saat müzik eğitimi verilmiştir. Verilen eğitimin matematik yetenekleri üzerindeki etkisi incelenmiştir. Çocukların Matematik Yetenekleri Test of Early Mathematics Ability (TEMA-2) ile değerlendirilmiştir. Sonuçta müzik eğitimi alan gruptan daha yüksek sonuçlar elde edilmiştir. (Geoghegan&Mitchelmore, 1996).2000 yılında Bilhartz, Bruhn ve Olson tarafından erken müzik eğitiminin çocuğun bilişsel gelişimine etkisi isimli bir araştırma yürütülmüştür. Araştırmada 4 ila 6 yaş arası 71 çocukla çalışılmıştır. Çocuklar bilişsel gelişim için "Stanford-Binet Intelligence Scale (SB)" testinin dördüncü edisyonu ile ve müzik için "Young Child Music Skills Assessment(MSA)" testi ile değerlendirilmiştir. Deney grubu 30 hafta süresince, haftada 75 dakika, ebeveyn katılımlı müzik programına tabi tutulmuştur. Müzik programına katılan çocuklardan daha yüksek sonuçlar elde edilmiştir (Bilhartz&Bruhn&Olson, 2000: 615).
Los Angeles'ta yapılan bir çalışmada 135 öğrenciye 4 ay boyunca piyano eğitimi verilmiş ve eğitim verilmeyen gruba göre matematik puanlarında %27 oranında artış görülmüştür (AMC, 2004).
Yetenek açısından düşünecek olursak; pek çok kişi matematik yeteneği ve müzik yeteneği arasında bir ilişki olamadığını varsaymaktadır. Matematik yeteneği olan çocuklar genellikle müzikle uğraşmaktan alıkoyulmazlar. Hatta bu çoğu zaman desteklenir. Ancak müzik yeteneği keşfedilen çocuklar için durum daha farklıdır. Bu çocuklar çoğu zaman müzikal açıdan desteklenmekte ancak bilişsel açıdan köreltilmektedir. Bu çocukların matematik yetenekleri çoğu zaman yok sayılmaktadır veya önemsenmemektedir. Oysa teknoloji çağı olan günümüzde "matematik mantığı" artık büyük önem kazanmıştır. Bilişsel açıdan eksik donanım ile mesleğe başlayan müzisyenler çoğu zaman bu eksikliği ilerleyen meslek hayatlarında hissetmektedirler.
Sergeant ve Thatcher (1974), zeka ve müzikal yetenekle ilgili üç çalışma yapmıştır. Sonuçları istatistiksel tekniklerle yorumlamışlardır ve şu sonuca varmışlardır; Tüm yüksek zekalı insanlar mutlaka müzikal değiller, fakat tüm müzikalitesi yüksek insanlar yüksek zekalıdır. Bu şekilde bakıldığında akademik zekanın müzikal başarı ile ilişkilendirilmesi şaşırtıcı değildir. Bu noktadan bakıldığı zaman; zeki çocukları, eğer müziğe ilgileri varsa, potansiyel müzisyen olarak görebiliriz (Boyle&Radocy, 1987: 142).
2001 yılında yapılan araştırmada 8 yaş grubundaki çocukların Matematik yetenekleri, müzik yetenekleri ve soyut zekaları arasındaki ilişki istatistiksel açıdan incelenmiştir. Toplam 75 çocuğa Müzik yetenek testi, Matematik yetenek testi ve Soyut zeka belirleyici test uygulanmıştır. Öğrencilerin Müzik Yetenekleri ve Matematik Yetenekleri arasında 0,423 lük bir ilişki bulunmuştur ve bu ilişki katsayısı istatistiksel açıdan 0,01 düzeyinde anlamlıdır.Yani, öğrencinin Müzik yeteneği yükseldikçe matematik yeteneği artmaktadır. Müzik Yeteneği ile Soyut Zeka arasında ise 0,295 lik bir ilişki bulunmuştur ve bu istatistiksel açıdan 0,01 düzeyinde anlamlıdır. Öğrencinin müzik yeteneği arttıkça Soyut Zekası da artmaktadır. Sonuç olarak her iki değişkende (Matematik Yeteneği ve Soyut Zeka Seviyesi) , Müzik Yeteneği ile ilişkilendirildiğinde anlamlı bir farklılık göstermiştir. Matematik Yeteneği ve Soyut Zeka karşılaştırıldığında ise en yüksek etkinin Matematik Yeteneğinde olduğu görülmektedir. Dolayısı ile, Matematik Yeteneği ile Müzik Yeteneği arasında oldukça anlamlı bir ilişki vardır. (Karşal,2004)
Matematik ve müzik pek çok açıdan birbiri ile ilişkili iki disiplindir. Antik çağlardan itibaren bu ilişki fark edilmiş ve pek çok matematikçinin ve düşünürün ilgisini çekmiştir. Bilimin ve sanatın temsilcileri sayılan bu iki disiplinin birbiri ile olan ilişkisinin etkin kullanımı günümüzde pek çok açıdan olumlu sonuçlar doğurabilir.Müzik, özellikle okul öncesi dönemi çocuklarında etkili bir eğitim aracı olarak kullanılabilir. Bu dönemde çocukların alacakları temel matematik eğitimi ve temel müzik eğitimi "doğru" verildiği taktirde, çocukların önlerindeki ufuk bir hayli genişleyecektir. Sadece okul öncesi dönemde değil sonraki dönemlerde de gerek müzik dinlemenin gerek enstrüman çalmanın kişilerin bilişsel aktivitelerine kattığı olumlu etki pek çok araştırmanın konusudur ve küçümsenemeyecek kadar önemlidir.
Ülkemizde müzik eğitimi verilen kurumlarda, özellikle küçük yaşta eğitime başlayan okullarda, çocuklar bilişsel açıdan oldukça yetersiz yetiştirilmektedirler. Müzik yeteneği olan çocukların bilişsel gelişimleri, eğitim sistemi içerisinde, bilerek veya bilmeden genellikle engellenmektedir. Günümüz teknoloji çağıdır. Her alanda olduğu gibi müzikte de teknoloji her geçen gün ilerleyerek kullanılmaktadır. Müzisyenlerdeki matematik mantığı artık daha çok önem kazanmaktadır. Tüm bunların yanı sıra, bilişsel açıdan daha ileri çocuklar müziği de çok daha kolay algılayabilmekte ve ilerleyebilmektedir. Bu iki disiplinin yetenek anlamında da ilişkili olduğu düşünülürse müzikalitesi yüksek olan çocukların zihinsel kapasitelerinin çok daha ileri olduğu unutulmamalıdır."
Ece KARŞAL 
Kaynak: http://www.muzikbilim.com/4e_2005/karsal_e.html
| | | | Devamı... 0 yorum

Müziğin Temelindeki Matematik

"Tarih boyunca pek çok matematikçi müzikle ilgilenmiştir. Bazılarımızın aklına 'Acaba pek çok müzisyen de matematikle ilgilenmiş midir?' gibi bir soru takılabilir. Kuşkusuz ilgilenen müzisyenler vardır ancak bir karşılaştırma yapılırsa matematikçiler çok daha öndedirler. "Müzik, iki bin yıl öncesinde matematiksel bir bilim olarak ele alınmıştır. Hatta yakın zamanlarda bile Ozanam, Saverien ve Hutton'un matematik sözlüklerinde müzik ile ilgili makaleler vardır. Bu yüzden matematikçilerin müzik ile ilgili yazmaları şaşırtıcı gelmemelidir" (Archibald,1923: 2). Asıl konumuza dönecek olursak, müzik ve matematik arasındaki ilişkinin incelenmesi eski Yunanlılara kadar uzanır. Eski Yunan' da müzik, matematiğin 4 ana dalından biri olarak kabul edilmiştir. Pythagoras (M.Ö. 586) okulunun (Quadrivium) programına göre Müzik; Aritmetik, Geometri ve Astronomi ile aynı düzeyde kabul görmüştür. Bir telin değişik boyları ile değişik sesler elde edildiğini ortaya çıkartan Pyhagoras, M.Ö. 6. yüzyılda yaşamıştır ve bugün kullanılmakta olan müzikal dizinin temelini oluşturması açısından oldukça önemli bir iş yapmıştır. Konfiçyüs (M.Ö. 551-478) belirli modların insanlar üzerine etkisini incelemiştir. Platon ( M.Ö. 428/7-348/7) müziği etiğin bir parçası olarak kabul etmektedir.
Platon, karışıklıktan kaçınır ve basitliği savunur. Karışıklığın düzensizlik ve depresyona yol açacağını savunur. Platon, insan karakteri ile müzik arasında bir bağlantı bulmuştur. Pythagoras, 12 birimlik bir teli ikiye bölmüş ve oktavı elde etmiştir. Elde edilen 6 birimlik uzunluk ( telin ½ si), 12 birimlik uzunluğun bir oktav tizidir. Pythagoras 8 birimlik uzunluk ile (telin 2/3 ü) 5 li aralığı, 9 birimlik uzunluk ile (telin ¾ ü) 4 lü aralığı bulmuştur. Antik devirde dört sesin bir arada duyulması prensibi "tetrakord" olarak adlandırılmakta ve müzik teorisinin temel kuralı olarak sayılmaktadır. Böylelikle tetrakord, 6,8,9 ve 12 ile elde edilmiştir ve ileride değineceğimiz gibi bu sayılar bize "altın oran" konusunda da oldukça ilginç örtüşmeler sunmaktadır.
| Devamı... 0 yorum

Altın Oranın Görüldüğü ve Kullanıldığı Yerler

Altın oran, matematikte ve sanatta, bir bütünün parçaları arasındaki en uyumlu ve dengeli oran olarak kabul edilen özel bir sayısal orandır. Bu oran, eski Mısırlılar ve Yunanlar tarafından keşfedilmiş ve mimaride, sanatta sıkça kullanılmıştır. Altın oran, aynı zamanda Fibonacci dizisinin terimleri büyüdükçe birbirine yaklaşan yaklaşık değeri olarak da bilinir. 
Bir doğru parçası olan |AB|, altın orana uygun şekilde iki parçaya ayrılmak istendiğinde, bu bölünme noktası |C| öyle seçilir ki küçük parçanın uzunluğu |AC|, büyük parçanın uzunluğu |CB|'ye oranı, büyük parçanın uzunluğu |CB|'nin tamamına yani |AB|'ye oranına eşit olur. Matematiksel olarak bu durum |CB| /|AC| veya |AB| / |CB| şeklide oranlanarak ifade edilir ve bu oran 1.61803...gibi sabit bir sayıya yaklaşır. Bu sayı (Fi) sayısı olarak tanımlanır ve Yunan alfabesinin Φ harfiyle gösterilir. Fi sayısı, matematikte altın oran olarak bilinen özel bir sayıdır. Fi sayısı, doğada, sanatta, mimaride ve matematikte uyum ve estetik için ideal oran olarak kabul edilir. Altın Oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; 1,618033988749894... şeklinde devam eder. 
 
 
Altın oranın görülebildiği bazı yerler:
1) Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru tane sayılarının birbirine oranı altın oranı verir. Ayçiçeğinde tohumlar, altın açıya göre dizilmiştir ve bu sayede tohumlar birbirine en verimli şekilde yerleşir. Bu düzen, hem sağa hem sola doğru sarmal çizgiler oluşturur ve bu sarmalların sayıları ardışık Fibonacci sayılarıdır. Böylece ayçiçeği tohumlarının diziliminde doğrudan altın oran ve Fibonacci dizisi kendini gösterir.

Aşağıdaki Yazılar İlginizi Çekebilir!!!