Sayılar teorisi konusunda çalışmalarıyla ünlü Rus matematikçi. Uzun yıllar matematikçileri uğraştıran ve halen daha çalışmaları sorgulanan çözüme kavuşturulmaya çalışılan acayip bir bilim insanı. Goldbach, 18 Mart 1690’da Rusya’nın Konigsberg (şimdiki Rusya, Kaliningrad) şehrinde doğmuştur. 1725 yılında St. Petersburg’da tarih ve matematik profesörü olmuştur. 1728 yılında 2. Peter’e özel dersler vermek amacıyla Moskova’ya yerleşmiş, burada bir süre kaldıktan sonra Avrupa’ya gitmiştir. Avrupa’da, dönemin önemli matematikçileriyle görüşmek üzere dolaşmış, Leibniz, Bernoulli, De Moivre ve Hermann gibi matematikçilerle tanışmıştır. Goldbach’ın önemli çalışmaları Sayılar teorisi üzerinedir. Nerdeyse tüm akademik başarıları, Sayılar teorisi üzerine yaptığı çalışmalardan ve yayınladığı makalelerden dolayıdır.
Goldbach, çalışmalarında dönemin ünlü sayı kuramcısı Euler’le sürekli diyalog halinde olmuştur. Matematikçiye asıl ün kazandıran çalışması, asal sayılar ile ilgili öne sürdüğü varsayımdır. Goldbach’a göre “2’den büyük her çift sayı, iki asal sayının toplamı olarak ifade edilebilir.” Goldbach, bu varsayımından 1742’de Euler’e gönderdiği ünlü mektubunda bahseder. Goldbach asal sayılarla ilgili olarak ayrıca, her tek sayının üç asal sayının toplamı olduğunu da söylemiştir (Goldbach hipotezi) Ancak bu iki varsayımıyla ilgili olarak herhangi bir ispat sunmamıştır. Goldbach’ın birinci varsayımı hala doğruluğu kanıtlanmamış bir teori olarak görülmesine rağmen, ikinci varsayımı 1937’de Vinogradov’un çalışmaları sonucu ispatlanmıştır. Goldbach ayrıca, Sonlu toplamlar, Eğriler teorisi ve Denklemler teorisi üzerine de çalışmıştır.20 Kasım 1764’de Moskova’da ölmüştür.[1]
[1] http://tr.wikipedia.org/wiki/Christian_Goldbach
[2] http://www.biltek.tubitak.gov.tr/gelisim/matematik/problemler.htm#goldbach






Cauchy herşeyden önce, karmaşık bir değişkenin fonksiyonları kuramını ortaya atmıştır. Bu konuda çıkış noktası karmaşık bölgelerde integrallemeydi (1814 - 1830): eğrisel integrali tanımladı, bunun temel özelliklerini kanıtladı ve kalanlar hesabını ortaya attı. İkinci grup çalışmasında (1830 - 1846) fonksiyonların serilere açılımını ve karmaşık diferansiyelleme ya da analitiklik kavramlarını inceledi. Yaptığı cebir çalışmaları (yerine koyma hesabı, determinantlar ve matrisler kuramı, gruplar ve cebirsel genişlemeler kuramının oluşturulması) XIX. yy tarihsel hareketine, cebirsel yapıların bulunması ve incelenmesi biçiminde geçti. Cauchy mekanik alanında esneklik kuramının matematikle ilgili yönünü düzenledi. Gökbilim hesaplarını kolaylaştırdı ve hatalar kuramını geliştirdi. Fonksiyonlar kuramında da çok yenilikleri olan Cauchy, Cauchy - Riemann denklemleri, Cauchy teoremi, Cauchy integral formülü ve cauchy esas değeri buluşları sayılabilir. Bu saydığımız bağıntılar oldukça geniş buluşlardır. Karmaşık analizde çok uygulaması olan çok derin konuları içine almaktadır. İstenildiği kadar da genişletilip ilmin diğer dallarına uygulanabilirliği vardır.




