Sinx ve Cosx Fonksiyonları Türev İspatları

Etiketler :
Açının sinüsü ve kosinüsü: Birim çember üzerinde, rastgele bir P noktası belirleyelim. P noktasından orijine çizilerek oluşturulan açıyı gözönüne alalım. P noktasının bu açı sayesinde oluşturduğu apsis değerine açının kosinüsü, P noktasının ordinatına da açının sinüsü denir. Verilen P noktası için; x = cosa , y = sina olduğundan aşağıdaki sonuçlar çıkarılabilir.

1.     P noktası çember üzerinde ve yarıçapı 1 birim olan birim çember üzerinde bir nokta olduğu için; Cosinüs fonksiyonu -1 ile 1 arasında değerler alacaktır. Verilen tüm reel sayı değerleri için cosinüs fonksiyonun alabileceği en küçük değer -1 ve alabileceği en büyük değer ise +1 olacaktır. Birim çember üzerinde bu durum kolaylıkla görülebilir.
            -1 < cosa < 1  veya  cos : R ---> [-1,1]  dir. Yani kosinüs fonksiyonunun tanım kümesi R, görüntü kümesi [-1,1] dir. 
Aynı şekilde ; Sinüs fonksiyonu -1 ile 1 arasında değerler alacaktır. Verilen tüm reel sayı değerleri için sinüs fonksiyonun alabileceği en küçük değer -1 ve alabileceği en büyük değer ise +1 olacaktır. Birim çember üzerinde bu durum cosinüs fonksiyonunda olduğu gibi kolaylıkla görülebilir. 
-1 < sina <veya  sin : R ---> [-1,1]  dir. Yani sinüs fonksiyonunun tanım kümesi R, görüntü kümesi [-1,1] dir.

2.     x = cosa  ve  y = sina  olduğuna göre;    birim çemberde çizilen dik üçgen yardımıyla bir a açısı için pisagor teoremi uygulanırsa; cos2a + sin2a= 1  bulunur.  Bu trigonometrideki temel teoremlerden biridir.
Açının tanjantı ve kotanjant değerleri bulunurken; Birim çemberin dışındaki bir A noktasından çizilen teğeti incelersek;  m,  bir reel sayı olmak üzere, T(1,m) noktası teğetin üzerindedir. T noktasının ordinatına oluşan açının tanjantı denir. Tanjsnt değeri aynı zamanda verilen bir doğrunun eğimini verir. Eğim m harfi ile gösterilirse kısaca  m = tana yazılabilir.

Sonuç :T(1,m) noktası teğet üzerindeki herhangi bir nokta için, m herhangi bir nokta olabilir. Dolayısıyla; tanjant fonksiyonunun tanım kümesi pi sayısı 180 derece olarak ifade edilen radyan açı olmak üzere, (pi/2 +kpi) yani 90 derece ve tek katlarında (90, 270, 450... gibi açılar hariç olmak üzere) hariç bütün gerçel sayılar kümesinde tanımlıdır. Tanjant fonksiyonun görüntü kümesi ise R dir. Aynı şekilde cotanjant fonksiyonunun tanım kümesi (pi+kpi) yani 180 derece ve katlarında 180, 360, 540,...vs gibi açılar hariç olmak üzere) hariç bütün gerçel sayılarda tanımlıdır ve görüntü kümesi de R  olarak belirlenir. 

Tanjant ve cotanjant fonksiyonları çarpma işlemine göre birbirlerinin tersi olduğundan yani tanx = 1/cotx olarak yazılabildiği için tanx.cotx=1 olarak önemli bir teorem bulunmuş olur.
Tanjant ve cotanjant fonksiyonları aslında esas fonksiyonlar olmayıp tali fonksiyonlardandır. Yani tan fonksiyonu aslında bir açının sinüs değerinin, cosinüs değerine bölümü ile bulunabilir. tanx=sinx/cosx olarak yazılabilir. Aynı şekilde cotx=cosx/sinx olarak yazılabilir.

Verilen bu ön bilgilere göre trigonometrik fonksiyonların türevi alınırken trigonometrideki (Bkz. Trginometri Dönüşüm formülleri) (Bkz. Trigonometri Toplam ve fark formülleri) ve limit ile verilen türev tanımından yararlanılarak türev hesabı yapılır.

3 yorum:

  1. tşkkrler güzel paylaşım.. :)

    YanıtlaSil
  2. yukarıda limit h sıfıra giderken cos(h)-1/h sonucuna direk sıfır demiş, insan bir açıklar orsda sonsuz bölü sonsuz var

    YanıtlaSil
  3. sonsuz bölü sonsuzdan ziyade orda sıfır bölü sıfır tanımsızlığı var ama yine de sen bilirsin

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Kenarlarına göre özel dik üçgenler11.10.2020 - 0 YorumDik üçgenlerde en çok kullanılan ve kenar uzunlukları tam sayı olan belirli üçgenler bilinmektedir. Eğer bu üçgenleri bilirseniz pisagor bağıntısını uygulamadan daha pratik olarak pekçok soruyu çözebilirsiniz. 3–4–5 üçgeni: Kenar…
  • Proje ve Performans çalışması27.12.2013 - 1 Yorum PROJE -PERFORMANS ÇALIŞMASI MADDE 50- (1) Öğrenciler okulların özelliklerine göre yazılı sınavların dışında proje ve performans çalışması ile topluma hizmet etkinliklerine yönelik seminer, konferans ve benzeri çalışmalar yaparlar. Öğrenciler, her…
  • Meryem Mirzakhani17.07.2017 - 0 Yorum İranlı kadın matematikçi Meryem Mirzakhani'nin vefatı bu alanda çalışma yapanları derinden etkiledi. Daha yakın zamanlarda Fields madalyasını alan ilk kadın matematikçi diye haberi yapılan Meryem Mirzakhani, kısa hayatının ardından dünyaya veda…
  • Guillaume François Antoine L'Hôspital08.01.2010 - 0 YorumAsıl adı Guillaume François Antoine, Marquis de L'Hôspital (d. 1661 Paris – ö. 2 Şubat 1704 Paris) Fransız matematikçidir. En çok tanınmasına sebep olan çalışması kendi adıyla anılan bir rasyonel (kesirli) bir fonksiyonda pay ve paydanın…
  • İslam Hukuku-1 Konu Özeti13.01.2014 - 0 Yorumİlahiyat lisans Tamamlama 1. Sınıf Ders Özetleri  ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. öğrencilerimize faydalı olması amacıyla burada…
  • 2024 TYT-AYT Matematik soru dağılımı24.06.2024 - 0 Yorum2024 TYT 8 HAZİRAN 2024 Cumartesi günü gerçekleştirildi. 2024 TYT; lise müfredatı içerisinden seçilerek hazırlanan, daha çok okuduğunu anlamaya yönelik problem çözme becerisine dayalı soruların yer aldığı ortalama zorlukta bir sınav olmuştur.…
  • Allah’ın Şefkat ve Merhameti13.03.2025 - 0 YorumAllah ﷻ kullarına çok şefkatlidir. Cenâb-ı Hak,  "Allah kullarına çok şefkatlidir." (Al-i İmran, 30) beyanıyla eğer âhiret şefkatini kastetmişse, o yalnızca müminlere mahsustur, şayet dünya şefkatini kastetmişse, bu şefkat herkes içindir. Allah…
  • Tahrif edilen Tevrat ve İncil07.01.2009 - 0 Yorum İnsanın Yaratıcı'sını, yani Allah'ı tanıması, ancak O'nun bu konuda insana bir bilgi ulaştırmasıyla mümkün olabilir. Bu bilgiye ulaşmak için—ki insan için olabilecek en önemli bilgi budur—etrafına bakan insan, dört ilahi kitapla karşılaşır. ve bu…